Ir al contenido

Documat


Partial actions of groups on hyperspaces

  • Martínez, Luis [1] ; Tapia, Héctor Pinedo [1] ; Ramirez, Edwar [1]
    1. [1] Universidad Industrial de Santander

      Universidad Industrial de Santander

      Colombia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 23, Nº. 2, 2022, págs. 255-268
  • Idioma: inglés
  • DOI: 10.4995/agt.2022.15745
  • Enlaces
  • Resumen
    • Let X be a compact Hausdorff space. In this work we translate partial actions of X to partial actions on some hyperspaces determined by X, this gives an endofunctor 2- in the category of partial actions on compact Hausdorff spaces which generates a monad in this category. Moreover, structural relations between partial actions θ on X and partial determined by 2θ as well as their corresponding globalizations are established.

  • Referencias bibliográficas
    • F. Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0
    • J. Camargo, D. Herrera and S. Macías, Cells and $n$-fold hyperspaces, Colloq. Math. 145, no. 2 (2016), 157-166. https://doi.org/10.1016/j.topol.2015.10.001
    • K. Choi, Birget-Rhodes expansions of topological groups, Advanced Studies in Contemporary Mathematics 23, no. 1 (2013), 203-211.
    • M. Dokuchaev, Recent developments around partial actions, S~ao Paulo J. Math. Sci. 13, no. 1 (2019), 195-247. https://doi.org/10.1007/s40863-018-0087-y
    • M. Dokuchaev and R. Exel, Partial actions and subshifts, J. Funct. Analysis 272 (2017), 5038-5106. https://doi.org/10.1016/j.jfa.2017.02.020
    • R. Exel, Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal. 122,...
    • R. Exel, Partial actions of group and actions of inverse semigroups, Proc. Amer. Math. Soc. 126, no. 12 (1998), 3481-3494. https://doi.org/10.1090/S0002-9939-98-04575-4
    • R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical surveys and monographs; volume 224, Providence, Rhode Island:...
    • R. Exel, T. Giordano, and D. Gonçalves, Enveloping algebras of partial actions as groupoid $C^*$-algebras, J. Operator Theory 65 (2011), 197-210.
    • J. Kellendonk and M. V. Lawson, Partial actions of groups, International Journal of Algebra and Computation 14 (2004), 87-114. https://doi.org/10.1142/S0218196704001657
    • L. Martínez, H. Pinedo and A. Villamizar, Partial actions on profinite spaces, preprint.
    • S. Nadler and A. Illanes, Hyperspaces: Fundamentals and Recent Advances, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1999.
    • H. Pinedo and C. Uzcátegui, Polish globalization of Polish group partial actions, Math. Log. Quart. 63, no. 6 (2017), 481-490. https://doi.org/10.1002/malq.201600018
    • H. Pinedo and C. Uzcátegui, Borel globalization of partial actions of Polish groups, Arch. Mat. Log. 57 (2018), 617-627. https://doi.org/10.1007/s00153-017-0598-8
    • J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340.
    • B. Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138, no. 2 (2003), 159-170. https://doi.org/10.1007/s00605-002-0521-0

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno