Ir al contenido

Documat


Partial actions of groups on profinite spaces

  • Martínez, Luis [1] ; Pinedo, Héctor [2] ; Villamizar, Andrés [3]
    1. [1] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

    2. [2] Universidad Industrial de Santander

      Universidad Industrial de Santander

      Colombia

    3. [3] Universidad de Pamplona

      Universidad de Pamplona

      Colombia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 1, 2024, págs. 143-157
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.18049
  • Enlaces
  • Resumen
    • We show that for a partial action η with closed domain of a compact group G on a profinite space X the space of orbits X/~G is profinite, this leads to the fact that when G is profinite the enveloping space XG is also profinite. Moreover, we provide conditions for the induced quotient map πG  : X → X / ∼G  of η to have a continuous section. Relations between continuous sections of πG and continuous sections of the quotient map induced by the enveloping action of η are also considered. At the end of this work, we prove that the category of actions on profinite spaces with countable number of clopen sets is reflective in the category of actions of compact Hausdorff spaces having countable number of clopen sets.

  • Referencias bibliográficas
    • H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces having bases of countable order, Duke Math. J. 34 (1967), 255-271....
    • F. Abadie, Enveloping actions and Takai duality for partial actions. Journal of Funct. Anal. 197 (2003), 14-67. https://doi.org/10.1016/S0022-1236(02)00032-0
    • J. Avila, S. Buitrago and S. Zapata, The category of partial actions of a group: some constructions, Int. J. Pure Appl. Math. 95, no. 1 (2014),...
    • M. Dokuchaev, Recent developments around partial actions, Sao Paulo J. Math. Sci. 13, no. 1 (2019), 195-247. https://doi.org/10.1007/s40863-018-0087-y
    • R. Exel, Circle actions on $C^*$-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal. 122,...
    • R. Exel, Twisted partial actions: a classification of regular $C^*$-algebraic bundles, Proc. London Math. Soc. 74 (1997), 417-443. https://doi.org/10.1112/S0024611597000154
    • R. Exel, Partial actions of group and actions of inverse semigroups, Proc. Am. Math. Soc. 126, no. 12 (1998), 3481-3494. https://doi.org/10.1090/S0002-9939-98-04575-4
    • R. Exel, Partial dynamical systems, Fell bundles and applications, Mathematical surveys and monographs; volume 224, Providence, Rhode Island:...
    • R. Exel, T. Giordano, and D. Gonçalves, Enveloping algebras of partial actions as groupoid $C^*$-algebras, J. Operator Theory 65 (2011), 197-210.
    • J. Kellendonk and M. V. Lawson, Partial Actions of Groups, International Journal of Algebra and Computation 14 (2004), 87-114. https://doi.org/10.1142/S0218196704001657
    • M. Khrypchenko and B. Novikov, Reflectors and globalizations of partial actions of groups, J. Aust. Math. Soc. 104, no. 3 (2018), 358-379....
    • K. McClanaham, K-theory for partial crossed products by discrete groups, J. Funct. Anal. 130 (1995), 77-117. https://doi.org/10.1006/jfan.1995.1064
    • S. MacLane, Categories for the Working Mathematician, Springer, New York-Heidelberg-Berlin, 1971. https://doi.org/10.1007/978-1-4612-9839-7
    • A. Magid, The separable Galois theory of commutative rings, second edition, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1974.
    • H. Pinedo and C. Uzcátegui, Polish globalization of Polish group partial actions, Math. Log. Quart. 63 6 (2017), 481-490. https://doi.org/10.1002/malq.201600018
    • H. Pinedo and C. Uzcátegui, Borel globalization of partial actions of Polish groups, Arch. Mat. Log. 57 (2018), 617-627. https://doi.org/10.1007/s00153-017-0598-8
    • J. C. Quigg and I. Raeburn, Characterizations of crossed products by partial actions, J. Operator Theory 37 (1997), 311-340.
    • L. Ribes and P. Zalesski, Profinite Groups, Springer, Berlin, 2000. https://doi.org/10.1007/978-3-662-04097-3
    • B. Steinberg, Partial actions of groups on cell complexes, Monatsh. Math. 138, no. 2 (2003), 159-170. https://doi.org/10.1007/s00605-002-0521-0

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno