Ir al contenido

Documat


Analysis of Q-Fractional Implicit Differential Equation with Nonlocal Riemann–Liouville and Erdélyi-Kober Q-Fractional Integral Conditions

  • Akbar Zada [1] ; Mehboob Alam [1] ; Khansa Hina Khalid [1] ; Ramsha Iqbal [1] ; Ioan-Lucian Popa [2]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

    2. [2] University of Alba Iulia
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This manuscript aims to present the existence, uniqueness, and various kinds of Ulam’s stability for the solution of the implicit q-fractional differential equation corresponding to nonlocal Erdélyi-Kober q-fractional integral conditions. We use different fixed point theorems to obtain the existence and uniqueness of solution. For stability, we utilize the classical technique of nonlinear functional analysis. The examples are presented as applications to illustrate the main results.

  • Referencias bibliográficas
    • 1. Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66(2), 365–370 (1969)
    • 2. Agarwal, R.P., Al-Hutami, H., Ahmad, B.: A Langevin-Type q-Variant System of Nonlinear Fractional Integro-Difference Equations with Nonlocal...
    • 3. Ahmad, B., Alghamdi, B., Agarwal, R.P., Alsaedi, A.: Riemann-Liouville Fractional IntegroDifferential Equations With Fractional Nonlocal...
    • 4. Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional qdifference inclusions with q-antiperiodic...
    • 5. Alam, M., Shah, D.: Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives....
    • 6. Alam, M., Zada, A.: Implementation of q-calculus on q-integro-differential equation involving antiperiodic boundary conditions with three...
    • 7. Alam, M., Zada, A., Popa, I.L., Kheiryan, A., Rezapour, S., Kaabar, M.K.A.: A Fractional Differential Equation with Multi-Point Strip Boundary...
    • 8. Alam, M., Zada, A., Riaz, U.: On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. Qual. Theory Dyn....
    • 9. Alizadeh, S., Baleanu, D., Rezapour, S.: Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional...
    • 10. Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Ednib. Math. Soc. II Ser. 15(2), 135–140 (1996)
    • 11. Baleanu, D., Etemad, S., Pourrazi, S., Rezapour, S.: On the new fractional hybrid boundary value problems with three-point integral hybrid...
    • 12. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound....
    • 13. Browder, A.: Mathematical Analysis: An Introduction. Springer-Verlag, New York (1996)
    • 14. Erdélyi, A., Kober, H.: Some remarks on Hankel transforms. Quart. J. Math., Oxford, Second Ser. 11, 212–221 (1940)
    • 15. Ernst, T.: The History of q-Calculus and a New Method. U. U. D. M. Report 2000: 16, ISSN 1101-3591. Uppsala University (2000)
    • 16. Gaulue, L.: Some results involving generalized Eedèlyi-Kober fractional q-integral operators. Revista Tecno-Cientfica URU. 6, 77–89 (2014)
    • 17. Granas, A., Dugundji, J.: Fixed point theory. Springer-Verlag, New York (2003)
    • 18. Hale, J.K., Lunel, S.M.V.: Introduction to functional differential equations, Applied Mathematicals Sciences series. Springer-Verlag,...
    • 19. Hyers, D.H.: On the stability of the linear functional equation. Natl. Acad. Sci. U.S.A. 27(4), 222–224 (1941)
    • 20. Jackson, F.H.: On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 46(2), 253–281 (1909)
    • 21. Jackson, F.H.: On a q-definite integrals. Quart. J. 41, 193–203 (1910)
    • 22. Jiang, M., Huang, R.: Existence of solutions for q-fractional differential equations with nonlocal Erdélyi-Kober q-fractional integral...
    • 23. Kac, V., Cheung, P.: Quantum Calculus. Springer, New york (2001)
    • 24. Kalla, S.L., Kiryakova, V.S.: An H-function generalized fractional calculus based upon compositions of Erdélyi-Kober operators in Lp....
    • 25. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional integrals and derivatives, theory and applications. Gordonand Breach, Switzerland...
    • 26. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics...
    • 27. Kiryakova, V.: Generalized fractional calculus and applications. Pitman Research Notes in Math., vol. 301. Longman, Harlow - J. Wiley,...
    • 28. Lakshmikantham, V., Leela, S., Vasundhara, J.: Theory of fractional dynamic Systems. Cambridge Academic Publishers, Cambridge, UK (2009)
    • 29. Leibniz, G.W.: Mathematica Shiften. Georg Olms Verlagsbuch-handlung, Hildesheim (1962)
    • 30. Luo, D., Alam, M., Zada, A., Riaz, U., Luo, Z.: Existence and stability of implicit fractional differential equations with Stieltjes boundary...
    • 31. Mohammadia, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due...
    • 32. Obloza, M.: Hyers stability of the linear differential equation. Rocznik NaukDydakt, Prace Mat. 13, 259–270 (1993)
    • 33. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)
    • 34. Rajkovi´c, P.M., Marinkovi´c, S.D., Stankovi´c, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1),...
    • 35. Ren, J., Zhai, C.: A fractional q-difference equation with integral boundary conditions and comparison theorem. Int. J. Nonlinear Sci....
    • 36. Sneddon, I.N.: The use in mathematical analysis of Erdélyi-Kober operators and some of their applications. In: Fractional Calculus and...
    • 37. Thongsalee, N., Ntouyas, S., Tariboon, J.: Nonlinear Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober fractional...
    • 38. Wang, X., Alam, M., Zada, A.: On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS...
    • 39. Yang, X.J., Srivastava, H.M., Cattani, C.: Local fractional homotopy perturbation method for solving fractial partial differential equations...
    • 40. Zada, A., Alam,M., Riaz, U.: Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions. Math. Meth....
    • 41. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville...
    • 42. Zada, A., Fatma, S., Ali, Z., Xu, J., Cui, Y.: Stability results for a coupled system of impulsive fractional differential equations....
    • 43. Zada, A., Li, T.: Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded...
    • 44. Zada, A., Pervaiz, B., Shah, S.O., Xu, J.: Stability analysis of first order impulsive nonautonomous system on timescales. Math. Meth....
    • 45. Zada, A., Rizwan, R., Xu, J., Fu, Z.: On implicit impulsive Langevin equation involving mixed order derivatives. Adv. Differ. Equ. 2019(1),...
    • 46. Zada, A., Shah, O., Shah, R.: Hyers-Ulam stability of non autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput....
    • 47. Zada, A., Waheed, H.: Stability analysis of implicit fractional differential equations with anti-periodic integral boundary value problem....
    • 48. Zada, A., Wang, P., Lassoued, D., Li, T.: Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno