Ir al contenido

Documat


Mathematical analysis: an introduction

La imagen de portada del libro no está disponible

Información General

  • Autores: Andrew Browder
  • Editores: New York : Springer-Verlag, cop. 1996
  • Año de publicación: 1996
  • País: Estados Unidos
  • Idioma: inglés
  • ISBN: 0-387-94614-4
  • Texto completo no disponible (Saber más ...)

Resumen

  • This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.

Otros catálogos

Índice

  • 1 Real Functions 2 Sequences and Series 3 Continuous Functions on Intervals 4 Differentiation 5 The Riemann Integral 6 Topology 7 Function Spaces 8 Differentiable Maps 9 Measures 10 Integration 11 Manifolds 12 Multilinear Algebra 13 Differential Forms 14 Integration on Manifolds



Fundación Dialnet

Mi Documat

Opciones de libro

Opciones de compartir

Opciones de entorno