Ir al contenido

Documat


Fourier multipliers for Triebel–Lizorkin spaces on compact Lie groups

  • Cardona, Duván [1] ; Ruzhansky, Michael [2]
    1. [1] Ghent University

      Ghent University

      Arrondissement Gent, Bélgica

    2. [2] Queen Mary University of London

      Queen Mary University of London

      Reino Unido

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 3, 2022, págs. 477-504
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00330-9
  • Enlaces
  • Resumen
    • We investigate the boundedness of Fourier multipliers on a compact Lie group when acting on Triebel-Lizorkin spaces. Criteria are given in terms of the Hörmander-Mihlin-Marcinkiewicz condition. In our analysis, we use the difference structure of the unitary dual of a compact Lie group. Our results cover the sharp Hörmander-Mihlin theorem on Lebesgue spaces and also other historical results on the subject.

  • Referencias bibliográficas
    • Alexopoulos, G.: Spectral multipliers on Lie groups of polynomial growth. Proc. Amer. Math. Soc. 120, 973–979 (1994)
    • Anker, J.P.: L^p-Fourier multipliers on Riemannian symmetric spaces of the noncompact type. Ann. Math. 132, 597–628 (1990)
    • Baernstein, A., II., Sawyer, E.T.: Embedding and multiplier theorems for H^p(R^n). Mem. Amer. Math. Soc. 318 (1985)
    • Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)
    • Cardona,D.: Besov continuity of pseudo-differential operators on compact Lie groups revisited. C. R. Math. Acad. Sci. Paris Vol. 355, Issue...
    • Cardona, D.: Continuity of pseudo-differential operators on Besov spaces on compact homogeneous manifolds. J. Pseudo-Differ. Oper. Appl. 9(4),...
    • Cardona, D., Delgado, J., Ruzhansky, M.: L^p-bounds for pseudo-differential operators on graded Lie groups. J. Geom. Anal. (2019). https://doi-org.sire.ub.edu/10.1007/s12220-021-00694-1
    • Cardona,D., Ruzhansky, M.:Fourier multipliers for Triebel-Lizorkin spaces on graded Lie groups. arXiv:2101.05856
    • Cardona,D., Ruzhansky,M.: Boundedness of pseudo-differential operators in subelliptic Sobolev and Besov spaces on compact Lie groups. arXiv:1901.06825
    • Cardona,D. , Ruzhansky,M.: Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups. arXiv:2008.09651
    • Cardona,D., Ruzhansky,M.: Littlewood-Paley theorem, Nikolskii inequality, Besov spaces, Fourier and spectral multipliers on graded Lie groups....
    • Cardona, D., Ruzhansky, M.: Multipliers for Besov spaces on graded Lie groups. C. R. Math. Acad. Sci. Paris. 4(355), 400–405 (2017)
    • P. Chen, E. M. Ouhabaz, A. Sikora, L. Yan, L, Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means....
    • Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on SU(2). Math. Z. 238, 1–36 (2001)
    • Delgado, J., Ruzhansky, M.: L^p-bounds for pseudo-differential operators on compact Lie groups. J. Inst. Math. Jussieu 18(3), 531–559 (2019)
    • Coifman, R.R., De Guzmán, M.: Singular integrals and multipliers on homogeneous spaces. Rev. un. Mat. Argentina, pp. 137–143 (1970)
    • Coifman,R., Weiss, G.:Analyse harmonique non-commutative sur certains espaces homogénes. (French) Étude de certaines intégrales singuliéres....
    • Coifman, R., Weiss, G.: Multiplier transformations of functions on SU(2) and \Sigma _2. Rev. Un. Mat. Argent. 25, 145–166 (1970)
    • Coifman, R., Weiss, G.: Central multiplier theorems for compact Lie groups. Bull. Am. Math. Soc. 80, 124–126 (1973)
    • ter Elst, A.F.M., Robinson, D.W.: Spectral estimates for positive Rockland operators, in Algebraic groups and Lie groups, Austral. Math. Soc....
    • Fejér, L.:Sur les fonctions intégrables et bornés, C.R. Acad. Sci. Paris, 10 décembre (1900), 984-987
    • Fefferman, C.: The multiplier problem for the ball. Ann. Math. 2(94), 330–336 (1971)
    • Fischer,V.: Differential structure on the dual of a compact Lie group, arXiv:1610.06348
    • Fischer, V., Ruzhansky, M.: Sobolev spaces on graded groups. Ann. Inst. Fourier 67, 1671–1723 (2017)
    • Fischer,V., Ruzhansky,M.: Fourier multipliers on graded Lie groups. arXiv:1411.6950. Colloq. Math. https://doi-org.sire.ub.edu/10.4064/cm7817-6-2020.
    • Fischer,V., Ruzhansky,M.: Quantization on nilpotent Lie groups. Progress in Mathematics, Vol. 314, Birkhäuser, (2016). (open access book)
    • Fischer, V., Ruzhansky, M.: Sobolev spaces on graded groups. Ann. Inst. Fourier (Grenoble) 67(4), 1671–1723 (2017)
    • Folland, G., Stein, E.: Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28. N.J.; University of Tokyo Press, Tokyo, Princeton...
    • Furioli, G., Melzi, C., Veneruso, A.: Littlewood-Paley decompositions and Besov spaces on Lie groups of polynomial growth. Math. Nachr. 279(9–10),...
    • Grafakos, L.: Some remarks on the Miklhin-Hörmander and Marcinkiewicz multiplier theorems: a short historical account and a recent improvement....
    • Hebish,W. : Calderón Zygmund decompositions on amenable groups. arXiv:1810.03566
    • Helffer, B., Nourrigat, J.: Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué....
    • Hong,Q., Hu,G., Ruzhansky,M.: Fourier multipliers for Hardy spaces on graded Lie groups, preprint
    • Hörmander, L.: Estimates for translation invariant operators in L^p spaces. Acta Math. 104, 93–140 (1960)
    • Marcinkiewicz, J.: Sur les multiplicateurs des séries de Fourier. Studia Math. 8, 78–91 (1939)
    • Mihlin,S. G.: On the multipliers of Fourier integrals. Dokl. Akad. Naulc SSSR (N. S.), 109 (1956), 701–703 (Russian)
    • Nursultanov, E., Ruzhansky, M., Tikhonov, S.: Nikolskii inequality and functional classes on compact Lie groups. Funct. Anal. Appl. 49, 226–229...
    • Nursultanov,E., Ruzhansky,M., Tikhonov,S.: Nikolskii inequality and Besov, Triebel-Lizorkin, Wiener and Beurling spaces on compact homogeneous...
    • Park, B.: Fourier multiplier theorems for Triebel-Lizorkin spaces. Math. Z. 293, 221–258 (2019)
    • Ruzhansky,M., Turunen,V.: Pseudo-differential Operators and Symmetries: Background Analysis and Advanced Topics Birkhäuser-Verlag, Basel,...
    • Ruzhansky, M., Turunen, V.: Global quantization of pseudo-differential operators on compact Lie groups, SU(2) and 3-sphere. Int. Math. Res....
    • Ruzhansky, M., Turunen, V., Wirth, J.: Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity....
    • Ruzhansky, M., Wirth, J.: Global functional calculus for operators on compact Lie groups. J. Funct. Anal. 267, 144–172 (2014)
    • Ruzhansky, M., Wirth, J.: L^p Fourier multipliers on compact Lie groups. Math. Z. 280, 621–642 (2015)
    • Seeger, A.: A limit case of the Hörmander multiplier theorem. Monatsh. Math. 105, 151–160 (1988)
    • Seeger, A.: Estimates near L^1 for Fourier multipliers and maximal functions. Arch. Math. (Basel) 53, 188–193 (1989)
    • Seeger, A.: Remarks on singular convolution operators. Studia Math. 97, 91–114 (1990)
    • Stein,E. M.: Topics in Harmonic Analysis Related to the Littlewood–Paley Theory, vol. 63 of Annals of Mathematics Studies. Princeton University...
    • Taibleson, M., Weiss, G.: The molecular characterization of certain Hardy spaces. Astérisque 77, 67–151 (1980)
    • Triebel, H.: Theory of function spaces. Monographs in Mathematics, vol. 78. Birkhäuser Verlag, Basel (1983)
    • Triebel, H.:Theory of function spaces. III, volume 100 of Monographs in Mathematics. Birkhäuser Verlag, Basel, (2006)
    • Varopoulos,N. Th., Saloff-Coste,L., Coulhon,T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics, 100. Cambridge University...
    • Weiss, N.: L^p estimates for bi-invariant operators on compact Lie groups. Am. J. Math. 94, 103–118 (1972)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno