Ir al contenido

Documat


Dynamics of a second order three species nonlinear difference system with exponents

  • Autores: D. S. Dilip, Smitha Mary Mathew
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 41, Nº. 4, 2022, págs. 983-997
  • Idioma: inglés
  • DOI: 10.22199/issn.0717-6279-4593
  • Enlaces
  • Resumen
    • In this paper, we study the persistence, boundedness, convergence, invariance and global asymptotic behavior of the positive solutions of the second order difference system xn+1 = α1 + ae−xn−1 + byne−yn−1 , (0.1) yn+1 = α2 + ce−yn−1 + dzne−zn−1, zn+1 = α3 + he−zn−1 + jxne−xn−1, n = 0, 1, 2,....

      Here xn, yn, zn can be considered as population densities of three species such that the population density of xn, yn, zn depends on the growth of yn, zn, xn respectively with growth rate b, d, j respectively. The positive real numbers α1, α2, α3 are immigration rate of xn, yn, zn respectively, while a, c, h denotes the growth rate of xn, yn, zn respectively, and the initial values x−1, y−1, z−1, x0, y0, z0 are nonnegative numbers.

  • Referencias bibliográficas
    • E. Camouzis and G. Ladas, Dynamics of third order rational difference equations with open problems. Chapman & Hall, 2007.
    • N. Fotiades and G. Papaschinopoulos, “Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential...
    • M. Kulenovic and G. Ladas, Dynamics of second order rational difference equations, Chapman & Hall, 2002.
    • M. N. Qureshi, A. Q. Khan, and Q. Din, "Asymptotic behavior of a Nicholson-Bailey Model, Advances in difference equations", vol. 2014,...
    • C. A. Clark, M. R. S. Kulenovic, and J. F. Selgrade, “On a sytem of rational difference equations”, Journal of difference equations and applications,...
    • S. Moranjkic and Z. Nurkanovic, “Basins of attraction of certain rational anti-competitive system of difference equations in the plane”, Advances...
    • G. Papaschinopoulos, M. A. Radin and C.J. Schinas, “On the system of two difference equations of exponential form”, Mathematical and computer...
    • G. Papaschinopoulos and C. J. Schinas, “On the dynamics of two exponential type systems of difference equations”, Computers and mathematics...
    • G. Papaschinopoulos, G. Ellina and K. B. Papadopoulos, “Asymptotic behavior of the positive solutions of an exponential type system of difference...
    • G. Papaschinopoulos, C.J. Schinas and G. Ellina, “On the dynamics of the solutions of a biological model”, Journal of difference equations...
    • G. Papaschinopoulos, N. Fotiades and C.J. Schinas, “On a system of difference equations including negative exponential terms”, Journal of...
    • N. Psarros, G. Papaschinopoulos, and K. B. Papadopoulos, “Long-term behavior of positive solutions of an exponentially self-regulating system...
    • H. Feng, H. Ma, and W. Ding, “Global asymptotic behavior of positive solutions for exponential form difference equations with three parameters”,...
    • Q. Din, MN Qureshi and A Qadeer Khan, “Dynamics of a fourth-order system of rational difference equations”, Advances in difference equations,...
    • V.L. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications. Dodrecht: Kluwer Academic, 1993.
    • E. A. Grove and G. Ladas, Periodicities in nonlinear difference equations. Chapman & Hall, 2005.
    • Q. Din, “Complexity and chaos control in a discrete-time prey-predator model”, Communications in nonlinear science and numerical simulation,...
    • D. Tilman and D. Wedin, “Oscillations and chaos in the dynamics of a perennial grass”, Nature, vol. 353, pp. 653-655, 1991. https://doi.org/10.1038/353653a0
    • R. Banerjee, P. Das, and D. Mukherjee, “Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional...
    • Ll. Alseda, B. Vidiella, R. Sole, J.T. Lazaro, and J. Sardanyes, “Dynamics in a time-discrete food-chain model with strong pressure on preys”,...
    • A. S. Ackleh and P. Zhang, “Competitive exclusion in a discrete stage-structured two species model”, Mathematical modelling of natural phenomena,...
    • A. S. Ackleh and P. De Leenheer, “Discrete three-stage population model: persistence and global stability results”, Journal of biological...
    • I. Ali, U. Saeed and Q. Din, “Bifurcation analysis and chaos control in discrete-time system of three competing species”, Arabian journal...
    • G. Lu and Z. Lu, “Non-permanence for three-species Lotka-Volterra cooperative difference systems”, Advances in difference equations, vol....
    • D. S. Dilip and S. M. Mathew, “Dynamics of a second order nonlinear difference system with exponents”, Journal of the Egyptian Mathematical...
    • D. S. Dilip and S. M. Mathew, “Stability analysis of a time varying population model without migration”, Journal of difference equations and...
    • A. T. Ademola, P. O. Arawomo, and A. S. Idowu, “Stability, boundedness and periodic solutions to certain second order delay differential equations”,...
    • X. Yu, Z. Zhu, and Z. Li, “Stability and bifurcation analysis of two-species competitive model with Michaelis Menten type harvesting in the...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno