Ir al contenido

Documat


Stability, boundedness and periodic solutions to certain second order delay differential equations.

  • Autores: A. T. Ademola, Peter Olutola Arawomo, A. S. Idowu
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 2, 2017, págs. 257-282
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172017000200257
  • Enlaces
  • Resumen
    • Stability, boundedness and existence of a unique periodic solution to certain second order nonlinear delay differential equations is discussed. By employing Lyapunov's direct (or second) method, a complete Lyapunov functional is constructed and used to establish sufficient conditions, on the nonlinear terms, that guarantee uniform asymptotic stability, uniform ultimate boundedness and existence of a unique periodic solution. Obtained results complement many outstanding recent results in the literature. Finally, examples are given to show the effectiveness of our method and correctness of our results.

  • Referencias bibliográficas
    • ADEMOLA, A. T. (2015) Boundedness and stability of solutions to certain second order differential equations. EN: Differential Equations and...
    • ADEMOLA, A. T. (2016) Stability and boundedness of solutions to a certain second order non autonomous stochastic differential equation. EN:...
    • ADEMOLA, A. T. (2016) Periodicity, stability, and boundedness of solutions to certain second order delay differential equations. EN: International...
    • ALABA, J. G. (2015) On stability and boundedness properties of solutions of certain second order non-autonomous nonlinear ordinary differential...
    • BURTON, T. A. (1985) Stability and periodic solutions of ordinary and functional differential equations. EN: Mathematics in Science and Engineering,...
    • BURTON, T. A. (1983) Volterra integral and differential equations. New York: Academic Press.
    • CAHLON, B. (2004) Stability criteria for certain second order delay differential equations with mixed coefficients, J. Comput. Appl. Math....
    • DRIVER, R. D. (1977) Ordinary and delay differential equations. New York: Springer Verlag.
    • DOMOSHNITSKY, A. (2014) Non oscillation, maximum principles, and exponential stability of second order delay differential equations without...
    • GRIGORYAN, G. A. (2013) Boundedness and stability criteria for linear ordinary differential equations of the second order. EN: Russian Mathematics...
    • HALE, J. K. (1977) Theory of functional differential equations. New York: Springer-Verlag.
    • JIN, Z. (2001) On the global asymptotic behaviour of solutions to a non autonomous generalized Lienard system. EN: J. Math. Res. Expo. 21...
    • KOLMANOVSKII, V. (1992) Applied theory of functional differential equations. [s.l.]: Springer.
    • KROOPNICK A. J. (2010) Bounded solutions to x00 + q(t)b(x) = f(t). EN: Int. J. Math. Edu. Sci. Tec. 41, 6. [s.l.: s.n.], 829 - 836.
    • KUAG, Y. (1985) Delay differential equations with applications in populations dynamics. EN: Mathematics in Science and Engineering, 191. Orlando,...
    • LAKSHMIKANTHAM, V., (1994) Theory of differential equations with unbounded delay. [s.l.]: Springer.
    • OGUNDARE, B. S. (2016) On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. EN: Ann...
    • OGUNDARE, B. S. (2014) Boundedness and stability properties of solutions of generalized Lienard equation. EN: Kochi J. Math., 9. [s.l.: s.n.],...
    • OGUNDARE, B. S. (2007) Boundedness, periodicity and stability of solution x + a(t)g(x ) + b(t)h(x) = p(t; x, x ). EN: Math. Sci....
    • TUNÇ, C. (2014) A note on the bounded solutions to x00+c(t, x, x0)+q(t)b(x) =f(t). EN: Appl. Math. Inf. Sci., 8(1). [s.l.: s.n.],...
    • TUNÇ, C. (2010) Boundedness analysis for certain two-dimensional differential systems via a Lyapunov approach. EN: Bull. Math. Soc. Sci. Math....
    • TUNÇ, C. (2013) New Results on the existence of periodic solutions for Rayleigh equation with state-dependent delay. EN: J. Math. Fund. Sci,...
    • TUNÇ, C. (2013) Stability and boundedness in multi delay vector Liénard equation. EN: Filomat 27(3). [s.l.: s.n.], 435 – 445. DOI 10.2298/FIL1303435T.
    • TUNÇ, C. (2011) Stability and boundedness of solutions of non-autonomous differential equations of second order. EN: J Comput. Anal. Appl....
    • TUNÇ, C. (2011) Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations. EN: Appl. Comput....
    • WANG, F. (2015) Existence, uniqueness and stability of periodic solutions of a duffing equation under periodic and anti-periodic eigenvalues...
    • XU, AN SHI. (1988) Boundedness and stability of solutions to second-order delay and non delay differential equations. EN: Chinese Ann. Math....
    • YENICERIOGLU, A. F. (2007) The behavior of solutions of second order delay differential equations. EN: J. Math. Anal. Appl. 332. [s.l.: s.n.],...
    • YENICERIOGLU, A. F. (2008) Stability properties of second order delay integrodifferential equations. EN: Computers and Mathematics with Applications...
    • YOSHIZAWA, T. (1959) Liapunov’s function and boundedness of solutions. EN: Funkcial. Ekvac. 2. [s.l.: s.n.], 95-142.
    • YOSHIZAWA, T. (1975) Stability theory and existence of periodic solutions and almost periodic solutions. New York: Spriger-Verlag.
    • YOSHIZAWA, T. (1966) Stability theory by Liapunov’s second method. EN: The Mathematical Society of Japan. [s.l.: s.n.].
    • ZHU, Y. F. (1992) On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno