Ir al contenido

Documat


Prolongations of G-structures related to Weil bundles and some applications

  • P.M. Kouotchop Wamba [2] ; Georgy F. Wankap Nono [1] ; A. Ntyam [2]
    1. [1] University of Ngaoundéré

      University of Ngaoundéré

      Camerún

    2. [2] Department of Mathematics, Higher Teacher Training college University of Yaoundé 1, PO.BOX 47 Yaoundé, Cameroon
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 37, Nº 1, 2022, págs. 111-138
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.37.1.111
  • Enlaces
  • Resumen
    • Let M be a smooth manifold of dimension m ≥ 1 and P be a G-structure on M , where G is a Lie subgroup of linear group GL(m). In [8], it has been defined the prolongations of G-structures related to tangent functor of higher order and some properties have been established. The aim of this paper is to generalize these prolongations to a Weil bundles. More precisely, we study the prolongations of G-structures on a manifold M , to its Weil bundle TAM (A is a Weil algebra) and we establish some properties. In particular, we characterize the canonical tensor fields induced by the A-prolongation of some classical G-structures.

  • Referencias bibliográficas
    • [1] D. Bernard, Sur la géométrie differentielle des G-structures, Ann. Inst. Fourier (Grenoble) 10 (1960), 151 – 270.
    • [2] A. Cabras, I. Kolar, Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (2) (1995), 139 – 145.
    • [3] J. Debecki, Linear natural operators lifting p-vectors to tensors of type (q, 0) on Weil bundles, Czechoslovak Math. J. 66 (2) (2016),...
    • [4] M. Doupovec, M. Kures, Some geometric constructions on Frobenius Weil bundles, Differential Geom. Appl. 35 (2014), 143 – 149.
    • [5] J. Gancarzewicz, W. Mikulski, Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135...
    • [6] I. Kolar, On the geometry of Weil bundles, Differential Geom. Appl. 35 (2014), 136 – 142.
    • [7] I. Kolar, Covariant approach to natural transformations of Weil functors, Comment. Math. Univ. Carolin. 27 (4) (1986), 723 – 729.
    • [8] I. Kolar, P. Michor, J. Slovak, “Natural Operations in Differential Geometry”, Springer-Verlag, Berlin, 1993.
    • [9] P.M. Kouotchop Wamba, A. Ntyam, Prolongations of Dirac structures related to Weil bundles, Lobachevskii J. Math. 35 (2014), 106 – 121.
    • [10] P.M. Kouotchop Wamba, A. Mba, Characterization of some natural transformations between the bundle functors T A ◦T ∗ and T ∗ ◦T A on Mfm,...
    • [11] M. Kures, W. Mikulski, Lifting of linear vector fields to product preserving gauge bundle functors on vector bundles, Lobachevskii J....
    • [12] A. Morimoto, Prolongations of G-structure to tangent bundles of higher order, Nagoya Math. J. 38 (1970), 153 – 179.
    • [13] A. Morimoto, Lifting of some types of tensor fields and connections to tangent bundles of pr -velocities, Nagoya Math. J. 40 (1970),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno