This article presents a list of open questions on higher rank Brill-Noether theory and coherent systems. Background material and appropriate references are included.
Referencias bibliográficas
E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves, vol. 1. New York: Springer, 1985. https://doi.org/10.1007/978-1-4757-5323-3
E. Ballico, “Coherent systems with many sections on projective curves”, International journal of mathematics, vol. 17, no. 03, pp. 263–267,...
E. Ballico, “Stable coherent systems on integral projective curves: an asymptotic existence theorem”, International journal of pure and applied...
E. Ballico and F. Prantil, “Coherent systems on singular genus one curves”, International journal of contemporary mathematical sciences, vol....
A. Bertram and B. Feinberg, “On stable rank two bundles with canonical determinant and many sections”, in Algebraic geometry, P. E. Newstead,...
U. N. Bhosle, “Brill-Noether theory on nodal curves”, International journal of mathematics, vol. 18, no. 10, pp. 1133–1150, 2007. https://doi.org/10.1142/s0129167x07004461
U. N. Bhosle, “Coherent systems on a nodal curve”, in Moduli spaces and vector bundles, L. Brambila-Paz, S. B. Bradlow, O. García-Prada and...
L. Brambila-Paz, V. Mercat, P. E. Newstead, and F. Ongay, “Nonemptiness of brill–noether loci”, International journal of mathematics, vol....
L. Brambila-Paz and A. Ortega, “Brill-Noether bundles and coherent systems on special curves”, in Moduli spaces and vector bundles, L. Brambila-Paz,...
L. Brambila-Paz and A. Ortega, “Estabilidad de sistemas coherentes”. Aportaciones matemáticas: Comunicaciones, vol. 40, pp. 15-26, 2009.
L. Brambila-Paz and H. Torres-López, “On chow stability for algebraic curves”, Manuscripta mathematica, vol. 151, no. 3-4, pp. 289–304, 2016....
S. Brivio and F. F. Favale, “On kernel bundles over reducible curves with a node”, International journal of mathematics, vol. 31, no. 07,...
S. Brivio and F. F. Favale, “Coherent systems on curves of compact type”, Journal of geometry and physics, vol. 158, 103850, 2020. https://doi.org/10.1016/j.geomphys.2020.103850
S. Brivio and F. Favale, “Coherent systems and BGN extensions on nodal reducible curves”, 2021, arXiv: 2104.06883v1.
D. C. Butler, “Normal generation of vector bundles over a curve”, Journal of differential geometry, vol. 39, no. 1, pp. 1-34, 1994. https://doi.org/10.4310/jdg/1214454673
D. C. Butler, “Birational maps of moduli of Brill-Noether pairs”, 1997, arXiv:alg-geom/9705009v1.
A. Castorena, A. López Martín, and M. Teixidor i Bigas, “Petri map for vector bundles near good bundles”, Journal of pure and applied algebra,...
A. Castorena, E. C. Mistretta and H. Torres-López, “On linear stability and syzygy stability for rank 2 linear series”, 2020, arXiv: 2001.03609v1.
A. Hirschowitz, “Problèmes de Brill-Noether en rang supérieur”, Comptes rendus des séances de l'Académie des sciences. Série 1, Mathématique,...
G. H. Hitching, M. Hoff, and P. E. Newstead, “Nonemptiness and smoothness of twisted Brill–Noether loci”, Annali di matematica pura ed applicata,...
M. Hoff, “A note on syzygies and normal generation for trigonal curves”, 2021, arXiv: 2108.06106v2.
A. D. King and P. E. Newstead, “Moduli of Brill-Noether pairs on algebraic curves”, International journal of mathematics, vol. 06, no. 05,...
H. Lange, V. Mercat, and P. E. Newstead, “On an example of Mukai”, Glasgow mathematical journal, vol. 54, no. 2, pp. 261–271, 2011. https://doi.org/10.1017/s0017089511000577
H. Lange and P. E. Newstead, “Coherent systems of genus 0”, International journal of mathematics, vol. 15, no. 04, pp. 409–424, 2004. https://doi.org/10.1142/s0129167x04002326
H. Lange and P. E. Newstead, “Coherent systems on elliptic curves”, International journal of mathematics, vol. 16, no. 07, pp. 787–805, 2005....
H. Lange and P. E. Newstead, “Coherent systems of genus 0 II: Existence results for K ≥ 3”, International journal of mathematics, vol. 18,...
H. Lange and P. E. Newstead, “Coherent systems of genus 0 III: Computation of flips for K = 1”, International journal of mathematics,...
C. Li, “On stability conditions for the quintic threefold”, Inventiones mathematicae, vol. 218, no. 1, pp. 301–340, 2019. https://doi.org/10.1007/s00222-019-00888-z
V. Mercat, “Le problème de brill-noether pour des fibrés stables de petite pente”, Journal für die reine und angewandte Mathematik (Crelles...
V. Mercat, “Le problème de brill-noether et le théorème de teixidor”, Manuscripta mathematica, vol. 98, no. 1, pp. 75–85, 1999. https://doi.org/10.1007/s002290050126
V. Mercat, “Fibrés stables de Pente 2”, Bulletin of the London mathematical society, vol. 33, no. 5, pp. 535–542, 2001. https://doi.org/10.1112/s0024609301008256
V. Mercat, “Clifford's theorem and higher rank vector bundles”, International journal of mathematics, vol. 13, no. 07, pp. 785–796, 2002....
S. Mukai, “Non-abelian Brill-Noether theory and Fano 3-folds”, 1997, arXiv: alg-geom/9704015v1
V. Muñoz, “Hodge polynomials of the moduli spaces of rank 3 pairs”, Geometriae dedicata, vol. 136, no. 1, pp. 17–46, 2008. https://doi.org/10.1007/s10711-008-9272-y
V. Muñoz, D. Ortega, and M.-J. Vázquez-Gallo, “Hodge polynomials of the moduli spaces of pairs”, International journal of mathematics, vol....
S. Pasotti and F. Prantil, “Holomorphic triples on elliptic curves”, Results in mathematics, vol. 50, no. 3-4, pp. 227–239, 2007. https://doi.org/10.1007/s00025-007-0248-2
S. Pasotti and F. Prantil, “Holomorphic triples of genus 0”, Central european journal of mathematics, vol. 6, no. 1, pp. 129–142, 2008. https://doi.org/10.2478/s11533-008-0008-x
N. Pflueger, “Brill–Noether varieties of k-gonal curves”, Advances in mathematics, vol. 312, pp. 46–63, 2017. https://doi.org/10.1016/j.aim.2017.01.027
R. Re, “Multiplication of sections and Clifford bounds for stable vector bundles on curves”, Communications in algebra, vol. 26, no. 6, pp....
L. Roa-Leguizamón, “Segre invariant and a stratification of the moduli space of coherent systems”, International journal of mathematics, vol....
B. Russo and M. Teixidor i Bigas, “On a conjecture of Lange”, Journal of algebraic geometry, vol. 8, pp. 483-496, 1999.
M. Teixidor i Bigas, “Brill-Noether theory for stable vector bundles”, Duke mathematical journal, vol. 62, no. 2, pp. 385-400, 1991. https://doi.org/10.1215/s0012-7094-91-06215-0
M. Teixidor i Bigas, “Moduli spaces of (semi)stable vector bundles on tree-like curves”, Mathematische annalen, vol. 290, no. 1, pp. 341–348,...
M. Teixidor i Bigas, “Moduli spaces of vector bundles on reducible curves”, American journal of mathematics, vol. 117, no. 1, pp. 125-139,...
M. Teixidor i Bigas, “Curves in Grassmannians”, Proceedings of the American mathematical society, vol. 126, no. 6, pp. 1597–1603, 1998. https://doi.org/10.1090/s0002-9939-98-04475-x
M. Teixidor i Bigas, “Rank two vector bundles with canonical determinant”, Mathematische nachrichten, vol. 265, no. 1, pp. 100–106, 2004....
M. Teixidor i Bigas, “Existence of coherent systems of rank two and dimension four”, Collectanea mathematica, vol. 58, no. 2, pp. 193-198,...
M. Teixidor i Bigas, “Petri map for rank two bundles with canonical determinant”, Compositio mathematica, vol. 144, no. 3, pp. 705–720, 2008....
M. Teixidor i Bigas, “Existence of coherent systems II”, International journal of mathematics, vol. 19, no. 10, pp. 1269–1283, 2008. https://doi.org/10.1142/s0129167x08005126
M. Teixidor i Bigas, “Existence of vector bundles of rank two with fixed determinant and sections”, Proceedings of the Japan academy, Series...
M. Teixidor i Bigas, “Injectivity of the Petri map for twisted brill–noether loci”, Manuscripta mathematica, vol. 145, no. 3-4, pp. 389–397,...
M. Thaddeus, “Stable pairs, linear systems and the Verlinde formula”, Inventiones mathematicae, vol. 117, no. 1, pp. 317–353, 1994. https://doi.org/10.1007/bf01232244
N. Zhang, “Towards the bertram–feinberg–mukai conjecture”, Journal of pure and applied algebra, vol. 220, no. 4, pp. 1588–1654, 2016. https://doi.org/10.1016/j.jpaa.2015.09.020
N. Zhang, “Expected dimensions of higher-rank Brill-Noether Loci”, Proceedings of the American mathematical society, vol. 145, no. 9, pp....