Ir al contenido

Documat


Brill–Noether loci on moduli spaces of symplectic bundles over curves

  • Bajravani, Ali [1] ; Hitching, George H. [2]
    1. [1] Department of Mathematics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53751-71379, Tabriz, Islamic Republic of Iran
    2. [2] Oslo Metropolitan University, Postboks 4, St. Olavs plass, 0130, Oslo, Norway
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 72, Fasc. 2, 2021, págs. 443-469
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00300-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The symplectic Brill–Noether locus {{{\mathcal {S}}}}_{2n, K}^k associated to a curve C parametrises stable rank 2n bundles over C with at least k sections and which carry a nondegenerate skewsymmetric bilinear form with values in the canonical bundle. This is a symmetric determinantal variety whose tangent spaces are defined by a symmetrised Petri map. We obtain upper bounds on the dimensions of various components of {{{\mathcal {S}}}}_{2n, K}^k. We show the nonemptiness of several {{{\mathcal {S}}}}_{2n, K}^k, and in most of these cases also the existence of a component which is generically smooth and of the expected dimension. As an application, for certain values of n and k we exhibit components of excess dimension of the standard Brill–Noether locus B^k_{2n, 2n(g-1)} over any curve of genus g \ge 122. We obtain similar results for moduli spaces of coherent systems.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno