Ir al contenido

Documat


On a p(x)-biharmonic Kirchhoff type problem with indefinite weight and no flux boundary condition

  • Mohamed Talbi [1] ; Mohammed Filali [2] ; Khalid Soualhine [2] ; Najib Tsouli [2]
    1. [1] CRMEF, Oujda, Morocco
    2. [2] Departement of Mathematics, Faculty of Sciences, University Mohamed I, Oujda, Morocco
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 2, 2022, págs. 237-252
  • Idioma: inglés
  • DOI: 10.1007/s13348-021-00316-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we study the existence and the multiplicity of nontrivial weak solutions for a fourth order variable exponent Kirchhoff type problem involving p(x)-biharmonic operator with changing sign weight and with no flux boundary condition. By using variational approach and the theory of variable exponent Sobolev spaces, we determine an interval of parameters for which this problem admits at least two nontrivial weak solutions.

  • Referencias bibliográficas
    • Afrouzi, G.A., Mirzapour, M., Chung, N.T.: Existence and multiplicity of solutions for Kirchhoff type problems involving p(x)-Biharmonic operators....
    • Afrouzi, G.A., Mirzapour, M., Rӑdulescu, V.D.: Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions....
    • Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348(1), 305–330 (1996)
    • Ayoujil, A., El Amrouss, A.R.: Continuous spectrum of a fourth-order nonhomogeneous elliptic equation with variable exponent. Electron. J....
    • Baraket, S., Rӑdulescu, V.D.: Combined effects of concave-convex nonlinearities in a fourth-order problem with variable exponent. Adv. Nonlinear...
    • Boureanu, M.M.: Fourth order problems with Leray–Lions type operators in variable exponent spaces. Discrete Contin. Dyn. Syst. Ser. S 12(2),...
    • Boureanu, M.M., Rӑdulescu, V.D., Repovš, D.: On a p(.) biharmonic problem with no-flux boundary condition. Comput. Math. Appl. 72(9), 2505–2515...
    • Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)
    • Chung, N.T., Toan, H.Q.: On a class of fractional Laplacian problems with variable exponents and indefinite weights. Collect. Math. 71(2),...
    • Corrêa, F.J.S.A., Figueiredo, G.M.: On a p-Kirchhoff equation via Krasnoselskiiʼs genus. Appl. Math. Lett. 22(6), 819–822 (2009)
    • Costa, D.G.: An invitation to Variational Methods in Differential Equations. Brikhäuser, Boston (2007)
    • Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis, Brikhäuser/Springer, Heidelberg, Foundations...
    • Dai, G., Ma, R.: Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal. Real World Appl. 12(5), 2666–2680...
    • Danet, C.P.: Two maximum principles for a nonlinear fourth order equation from thin plate theory. Electron. J. Qual. Theory Differ. Equ. 31,...
    • Darhouche, O.: Existence and multiplicity results for a class of Kirchhoff type problems involving p(x)-biharmonic operator. Bol. Soc. Parana....
    • Diening, L.: Maximal function on generalized Lebesgue spaces L^{p(x)}. Math. Inequal. Appl. 7(2), 245–253 (2004)
    • Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture notes in mathematics, vol....
    • Dreher, M.: The Kirchhoff equation for the p-Laplacian. Rend. Semin. Mat. Univ. Politec. Torino 64(2), 217–238 (2006)
    • Edmunds, D.E., Rákosník, J.: Sobolev embeddings with variable exponent. Studia Math. 143(3), 267–293 (2000)
    • El Amrouss, A.R., Ourraoui, A.: Existence of solutions for a boundary problem involving p(x)-biharmonic operator. Bol. Soc. Parana. Mat. 31(1),...
    • El Khalil, A., Laghzal, M., Morchid Alaoui, M.D., Touzani, A.: Eigenvalues for a class of singular problems involving p(x)-Biharmonic operator...
    • Fan, X.L.: Solutions for P(x)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312(2), 464–477 (2005)
    • Fan, X.L., Han, X.: Existence and multiplicity of solutions for p(x)-Laplacian equations in RN. Nonlinear Anal. 59(1–2), 173–188 (2004)
    • Fan, X.L., Zhao, D.: On the spaces L^{p(x)}(\Omega ) and W^{m, p(x)}(\Omega ). J. Math. Anal. Appl. 263(2), 424–446 (2001)
    • Ferrero, A., Warnault, G.: On solutions of second and fourth order elliptic equations with power-type nonlinearities. Nonlinear Anal. 70(8),...
    • Fragnelli, G.: Positive periodic solutions for a system of anisotropic parabolic equations. J. Math. Anal. Appl. 367(1), 204–228 (2010)
    • Jabri, Y.: The mountain pass theorem. Variants, generalizations and some applications. In: Encyclopedia of Mathematics and its Applications,...
    • Kefi, K., Rădulescu, V.D.: Small perturbations of nonlocal biharmonic problems with variable exponent and competing nonlinearities. Atti Accad....
    • Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
    • Kováčik, O., Rákosník, J.: On spaces L^{p(x)} and W^{k, p(x)}. Czechoslovak Math. J. 41(4), 592–618 (1991)
    • Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Penha and Medeiros (eds.) Proceedings of international...
    • Liu, Q.: Existence of three solutions for p(x)-Laplacian equations. Nonlinear Anal. 68(7), 2119–2127 (2008)
    • Matei, P.: Nemytskij operators in Lebesgue spaces with a variable exponent. Rom. J. Math. Comput. Sci. 3(2), 109–118 (2013)
    • Miao, Q.: Multiple solutions for nonlocal elliptic systems involving p(x)-biharmonic operator. Mathematics 7(8), 756 (2019)
    • Myers, T.G.: Thin films with high surface tension. SIAM Rev. 40(3), 441–462 (1998)
    • Pucci, P., Rădulescu, V.D.: The impact of the mountain pass theory in nonlinear analysis: a mathematical survey. Boll. Unione Mat. Ital. 3(3),...
    • Rădulescu, V.D., Repovš, D.D.: Partial differential equations with variable exponents. Variational Methods and Qualitative Analysis. Monographs...
    • Růžička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture notes in mathematics, vol. 1748. Springer, Berlin (2000)
    • Xiang, M., Rădulescu, V.D., Zhang, B.: Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity. Calc. Var. Partial Differ....
    • Xiang, M., Zhang, B., Rădulescu, V.D.: Super linear Schrdinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent....
    • Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces. Nonlinear Anal. 69(10), 3629–3636...
    • Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory(in Russian). Izv. Akad. Nauk SSSR Ser. Mat 50(4),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno