Let \Omega \subset {\mathbb {R}}^N, N\ge 2, be a bounded smooth domain. In this paper, we consider a class of fractional Laplacian problems of the form \begin{aligned} \left\{ \begin{array}{ll} (\Delta )^s_{p_1(x,.)}u(x)+(\Delta )^s_{p_2(x,.)}u(x) + |u|^{q(x)-2}u = \lambda V_1(x)|u(x)|^{r_1(x)-2}u(x) \\ \qquad - \mu V_2(x)|u(x)|^{r_2(x)-2}u(x) \hbox { in }\Omega , \\ u(x) = 0 \; \hbox { in } \partial \Omega , \end{array} \right. \end{aligned} where (\Delta )^s_{p_i(.,.)} (0
© 2008-2025 Fundación Dialnet · Todos los derechos reservados