Ir al contenido

Documat


On a class of fractional Laplacian problems with variable exponents and indefinite weights

  • Autores: Nguyen Thanh Chung, Hoang Quoc Toan
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 2, 2020, págs. 223-237
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00254-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let \Omega \subset {\mathbb {R}}^N, N\ge 2, be a bounded smooth domain. In this paper, we consider a class of fractional Laplacian problems of the form \begin{aligned} \left\{ \begin{array}{ll} (\Delta )^s_{p_1(x,.)}u(x)+(\Delta )^s_{p_2(x,.)}u(x) + |u|^{q(x)-2}u = \lambda V_1(x)|u(x)|^{r_1(x)-2}u(x) \\ \qquad - \mu V_2(x)|u(x)|^{r_2(x)-2}u(x) \hbox { in }\Omega , \\ u(x) = 0 \; \hbox { in } \partial \Omega , \end{array} \right. \end{aligned} where (\Delta )^s_{p_i(.,.)} (0

  • Referencias bibliográficas
    • Ali, K.B., Hsini, M., Kefi, K., Chung, N.T.: On a nonlocal fractional $$p(., .)$$ p ( . , . ) -Laplacian problem with competing nonlinearities....
    • Allaoui, M., Darhouche, O.: Existence results for a class of nonlocal problems involving the $$(p_1(x), p_2(x))$$ ( p 1 ( x ) , p 2 ( x ) ) -Laplace...
    • Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity....
    • Azroul, E., Benkirane, A., Shimi, M.: Eigenvalue problems involving the fractional $$p(x)$$ p ( x ) -Laplacian operator. Adv. Oper....
    • Bahrouni, A., Radulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent....
    • Bahrouni, A.: Comparison and sub-supersolution principles for the fractional $$p(x)$$ p ( x ) -Laplacian. J. Math. Anal. Appl. 458,...
    • Bisci, G.M., Radulescu, D.V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and Its Applications,...
    • Bonanno, G., Chinni, A.: Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent. J. Math. Anal....
    • Bouslimi, M., Kefi, K.: Existence of solution for an indefinite weight quasilinear problem with variable exponent. Complex Var. Elliptic Equ....
    • Chung, N.T.: Multiple solutions for a class of $$p(x)$$ p ( x ) -Laplacian problems involving concave–convex nonlinearities. Electron....
    • Chung, N.T.: Some remarks on a class of $$p(x)$$ p ( x ) -Laplacian Robin eigenvalue problems. Mediterr. J. Math. 15(4), 147 (2018)
    • Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes, vol. 2017. Springer,...
    • Edmunds, D., Rakosnik, J.: Sobolev embeddings with variable exponent. Stud. Math. 143, 267–293 (2000)
    • Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
    • Fan, X.L., Zhao, D.: On the spaces $$ L_{p(x)}(\Omega )$$ L p ( x ) ( Ω ) and $$W^{k, m(x)}(\Omega )$$ W k , m ( x ) ( Ω ) ....
    • Fan, X.L., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $$W^{k, p(x)}(\Omega )$$ W k , p ( x ) ( Ω ) . J. Math....
    • Kaufmann, U., Rossi, J.D., Vidal, R.: Fractional Sobolev spaces with variable exponents and $$p(x)$$ p ( x ) -Laplacian. Electron....
    • Kefi, K.: $$p(x)$$ p ( x ) -Laplacian with indefinite weight. Proc. Am. Math. Soc. 139(12), 4351–4360 (2011)
    • Massar, M.: Existence of multiple solutions for a class of nonhomogeneous problems with critical growth. Electron. J. Qual. Theory Differ....
    • Mihailescu, M.: On a class of nonlinear problems involving a $$p(x)$$ p ( x ) -Laplace type operator. Czechoslov. Math. J. 58(133),...
    • Mihailescu, M., Radulescu, V.: Continuous spectrum for a class of nonhomogeneous differential operators. Manuscr. Math. 125, 157–167 (2008)
    • Mihailescu, M., Radulescu, V.: Concentration phenomena in nonlinear eigenvalue problems with variable exponents and sign-changing potential....
    • Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
    • Nyamoradi, N., Chung, N.T.: Existence of solutions to nonlocal Kirchhoff equations of elliptic type via genus theory. Electron. J. Differ....
    • Nyamoradi, N., Zaidan, L.: Existence and multiplicity of solutions for fractional $$p$$ p -Laplacian Schrödinger–Kirchhoff type equations....
    • Pezzo, L.M.D., Rossi, J.D.: Trace for fractional Sobolev spaces with variables exponents. Adv. Oper. Theory 2(4), 435–446 (2017)
    • Radulescu, V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. (TMA) 121, 336–369 (2015)
    • Struwe, M.: Variational Methods, vol. 34, 4th edn. Springer, Berlin (2008)
    • Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional $$p$$ p -Laplacian....
    • Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno