Ir al contenido

Documat


Stability Analysis of Second Order Impulsive Differential Equations

  • Qian Wen [1] ; JinRong Wang [1] ; Donal O'Regan [2]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] National University of Ireland

      National University of Ireland

      Irlanda

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 2, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we apply the strongly continuous cosine family of bounded linear operators to study the explicit representation of solutions for second order linear impulsive differential equations, and we give sufficient conditions for asymptotical stability of solutions. In addition we study the exponential stability of the linear perturbed problem. Existence and uniqueness of solutions of the initial value problem for nonlinear second order impulsive differential equations is obtained and we present Ulam–Hyers–Rassias stability results. Examples are provided to illustrate the applicability of our results.

  • Referencias bibliográficas
    • 1. Milman, V.D., Myshkis, A.D.: On the stability of motion in the presence of impulses. Sib. Math. J. 1, 233–237 (1960). ((in Russian))
    • 2. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equation: Periodic Solutions and Applications. Longman Scientific & Technical,...
    • 3. Bainov, D.D., Simeonov, P.S.: Oscillation Theory of Impulsive Differential Equations. International Publications, Orlando (1998)
    • 4. Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Series on Advances in Mathematics for Applied Sciences, vol....
    • 5. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Sigapore (1995)
    • 6. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, Cairo (2006)
    • 7. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, Series in Mordern Applied Mathematics, vol....
    • 8. Hopfield, J.J., Tank, D.T.: Comptuation with neural circuits: a model. Science 233, 3088–3092 (1986)
    • 9. Zada, A., Shah, O., Shah, R.: Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput....
    • 10. Barbu, D., Bu¸se, C., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 42, 1738–1752 (2015)
    • 11. Shah, S.O., Zada, A., Muzammil, M., Tayyab, M., Rizwan, R.: On the Bielecki-Ulams type stability results of first order non-linear impulsive...
    • 12. Shah, S.O., Zada, A., Tunc, C., Asad, A.: Bielecki-Ulam-Hyers stability of non-linear Volterra impulsive integro-delay dynamic systems...
    • 13. Zada, A., Shah, S.O.: Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses....
    • 14. Bainov, D.D., Simeonov, P.S.: Systems with Impulsive Effect Stability, Theory and Applications. Ellis Horwood Series in Mathematics and...
    • 15. Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific & Technical,...
    • 16. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)
    • 17. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
    • 18. Rassias, Th.M.: On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
    • 19. Wang, J., Feˇckan, M., Tian, Y.: Stability Analysis for a general class of non-instantaneous impulsive differential equations. Mediterr....
    • 20. Malik, M., Avadhesh, K., Feˇckan, M.: Existence, uniqueness and stability of solutions to second order nonlinear differential equations...
    • 21. Wang, J., Feˇckan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915–933 (2015)
    • 22. Wang, J., Feˇckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264...
    • 23. Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time...
    • 24. G˘avru¸t˘a, P., Jung, S.M., Li, Y.J.: Hyers-Ulam stability for second-order linear differential equations with boundary conditions. Electron....
    • 25. Mohanapriya, A., Ganesh, A., Gunasekaran, N.: The Fourier transform approach to Hyers-Ulam stability of differential equation of second...
    • 26. Jung, S.M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17, 1135–1140 (2004)
    • 27. Li, T., Zada, A.: Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded...
    • 28. Jung, S.M.: Hyers-Ulam stability of linear differential equations of first order (II). Appl. Math. Lett. 19, 854–858 (2006)
    • 29. Jung, S.M.: Hyers-Ulam stability of linear differential equations of first order (III). J. Math. Anal. Appl. 311, 139–146 (2005)
    • 30. Shah, S.O., Zada, A.: On the stability analysis of non-linear Hammerstein impulsive integro-dynamic system on time scales with delay,...
    • 31. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous...
    • 32. Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North Holland Mathematics Studies, vol. 108. Elsevier Science,...
    • 33. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Series in Colloquium Publications Amer. Mathematical Society American...
    • 34. Hartman, Ph.: Ordinary Differential Equations. John Wiley & Sons, New York (1964)
    • 35. Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, San Diego (1998)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno