Ir al contenido

Documat


On the Bielecki–Ulam’s Type Stability Results of First Order Non-linear Impulsive Delay Dynamic Systems on Time Scales

  • Shah, Syed Omar [1] ; Zada, Akbar [2] ; Muzamil, Muzamil [1] ; Rizwan, Rizwan [3]
    1. [1] Qurtuba University of Science and Information Technology

      Qurtuba University of Science and Information Technology

      Pakistán

    2. [2] University of Peshawar

      University of Peshawar

      Pakistán

    3. [3] University of Buner
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00436-8
  • Enlaces
  • Resumen
    • In this manuscript, we present the existence and uniqueness of solution of first order non-linear impulsive delay dynamic systems on time scales, with the help of fixed point approach. Further, we investigate the Bielecki–Ulam–Hyers stability and Bielecki–Ulam–Hyers–Rassias stability of the proposed model. We use Grönwall’s inequality on time scales, Banach contraction principle, Picard operator and Lipschitz condition as a basic tools to develop our main results. Also, two examples are provided to illustrate the obtained results.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Awan, A.S., ÓRegan, D., Younus, A.: Linear impulsive Volterra integro–dynamic system on time scales. Adv. Differ. Equ.,...
    • 2. Ahmad, M., Jiang, J., Zada, A., Shah, S.O., Xu, J.: Analysis of coupled system of implicit fractional differential equations involving...
    • 3. Ahmad, M., Zada, A., Alzabut, J.: Stability analysis of a nonlinear coupled implicit switched singular fractional differential equations...
    • 4. Ahmad, M., Zada, A., Alzabut, J.: Hyers–Ulam stability of a coupled system of fractional differential equations of Hilfer–Hadamard type....
    • 5. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)
    • 6. Alzabut, J., Mohammadaliee, B., Samei, M.E.: Solutions of two fractional q-integro-differential equations under sum and integral boundary...
    • 7. András, S., Mészáros, A.R.: Ulam–Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219(9),...
    • 8. Bainov, D.D., Dishliev, A.: Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken...
    • 9. Bainov, D.D., Simenov, P.S.: Systems with Impulse Effect Stability Theory and Applications. Ellis Horwood Limited, Chichester (1989)
    • 10. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
    • 11. Bohner, M., Peterson, A.: Advances in Dynamics Equations on Time Scales. Birkhäuser, Boston (2003)
    • 12. Dachunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176(2), 381–410 (2005)
    • 13. Hamza, A., Oraby, K.M.: Stability of abstract dynamic equations on time scales. Adv. Differ. Equ. 2012(143), 1–15 (2012)
    • 14. Hilger, S.: Analysis on measure chains: a unified approach to continuous and discrete calculus. Result Math. 18, 18–56 (1990)
    • 15. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941)
    • 16. Jung, S.-M.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17(10), 1135–1140 (2004)
    • 17. Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, NewYork, 48 (2011)
    • 18. Li, Y., Shen, Y.: Hyers–Ulam stability of linear differential equations of second order. Appl. Math. Lett. 23(3), 306–309 (2010)
    • 19. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions....
    • 20. Lupulescu, V., Zada, A.: Linear impulsive dynamic systems on time scales. Electron. J. Qual. Theory Differ. Equ. (11)(2010), 1–30
    • 21. Matar, M.M., Skhail, E.S.A., Alzabut, J.: On solvability of nonlinear fractional differential systems involving nonlocal initial conditions....
    • 22. Nenov, S.I.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal. Theory Methods Appl. 36(7), 881–890...
    • 23. Obłoza, M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat., (13)(1993), 259–270
    • 24. Obłoza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat....
    • 25. Pötzsche, C., Siegmund, S., Wirth, F.: A spectral characterization of exponential stability for linear time-invariant systems on time...
    • 26. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)
    • 27. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Meth. Appl. Sci. 43(1), 427–442 (2020)
    • 28. Rizwan, R., Zada, A., Wang, X.: Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses....
    • 29. Seemab, A., Rehman, M.U., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional boundary value problems....
    • 30. Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time...
    • 31. Shah, S.O., Zada, A.: On the stability analysis of non-linear Hammerstein impulsive integro-dynamic system on time scales with delay....
    • 32. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous...
    • 33. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience Publisheres, New York (1960)
    • 34. Ulam, S.M.: Problem in Modern Mathematics, Science Editions. Wiley, New York (1964)
    • 35. Wang, J.R., Feˇckan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr....
    • 36. Wang, J.R., Feˇckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395(1), 258–264...
    • 37. Wang, J.R., Feˇckan, M., Zhou, Y.: On the stability of first order impulsive evolution equations. Opuscula Math. 34(3), 639–657 (2014)
    • 38. Wang, J.R., Li, X.: A uniform method to Ulam–Hyers stability for some linear fractional equations. Mediterr. J. Math. 13, 625–635 (2016)
    • 39. Wang, J.R., Zhang, Y.: A class of nonlinear differential equations with fractional integrable impulses. Commun. Nonlinear Sci. Numer....
    • 40. Younus, A., O’Regan, D., Yasmin, N., Mirza, S.: Stability criteria for nonlinear Volterra integrodynamic systems. Appl. Math. Inf. Sci....
    • 41. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville...
    • 42. Zada, A., Pervaiz, B., Shah, S.O., Xu, J.: Stability analysis of first-order impulsive nonautonomous system on timescales. Math. Meth....
    • 43. Zada, A., Shah, O., Shah, R.: Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput....
    • 44. Zada, A., Shah, S.O.: Hyers–Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses....
    • 45. Zada, A., Waheed, H., Alzabut, J., Wang, X.: Existence and stability of impulsive coupled system of fractional integrodifferential equations....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno