Ir al contenido

Documat


Resumen de Polynomial ring representations of endomorphisms of exterior powers

Ommolbanin Behzad, André Contiero, Renato Vidal Martins, Letterio Gatto

  • An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k-th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.


Fundación Dialnet

Mi Documat