Ir al contenido

Documat


Polynomial ring representations of endomorphisms of exterior powers

  • Behzad, Ommolbanin [3] ; Contiero, André [1] ; Martins, Renato Vidal [1] ; Gatto, Letterio [2]
    1. [1] Universidade Federal de Minas Gerais

      Universidade Federal de Minas Gerais

      Brasil

    2. [2] Polytechnic University of Turin

      Polytechnic University of Turin

      Torino, Italia

    3. [3] Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 73, Fasc. 1, 2022, págs. 107-133
  • Idioma: inglés
  • DOI: 10.1007/s13348-020-00310-5
  • Enlaces
  • Resumen
    • An explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k-th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.

  • Referencias bibliográficas
    • Anderson, D., Nigro, A.: Minuscule Schubert Calculus and the geometric Satake correspondence. In: Hu J., Li C., Mihalcea L.C. (Eds.) Schubert...
    • Behzad, O., Gatto, L.: Bosonic and Fermionic representations of endomorphisms of exterior Algebras. Fundamenta Math. (2021) (to appear). ArXiv​:2009.00479​.pdf
    • Behzad, O., Nasrollah, A.: Universal Factorisation algebras of polynomials represent Lie algebras of endomorphisms. J. Algebra Appl. (2021)....
    • Cordovez, J., Gatto, L., Santiago, T.: Newton binomial formulas in Schubert calculus. Rev. Mat. Complut. 22(1), 129–152 (2009)
    • Costa, L., Marchesi, S., Miró-Roig, R.M.: Tango bundles on Grassmannians. Math. Nachr. 289(8–9), 950–961 (2016)
    • Cotti, G., Dubrovin, B., Guzzetti, D.: Helix structures in quantum cohomology of fano varieties ArXiv:1811.09235 (2019)
    • Cox, B., Futorny, V., Tirao, J.A.: DJKM algebras and non-classical orthogonal polynomials. J. Differ. Equ. 255(9), 2846–2870 (2013)
    • Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. III. Operator approach to the Kadomtsev–Petviashvili...
    • Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, vol. 88, 2nd edn. American Mathematical...
    • Frenkel, I., Penkov, I., Serganova, V.: A categorification of the boson-fermion correspondence via representation theory of sl(\infty ). Commun....
    • Fulton, W.: Young tableaux, London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (with applications to...
    • Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford...
    • Gatto, L.: Schubert calculus via Hasse–Schmidt derivations. Asian J. Math. 9(3), 315–321 (2005)
    • Gatto, L., Laksov, D.: From linear recurrence relations to linear ODEs with constant coefficients. J. Algebra Its Appl. 15(6), 1650109 (2016)....
    • Gatto, L., Ricolfi, A.T.: Jet bundles on Gornstein curves and applications. J. Singul. 21, 70–103 (2020)
    • Gatto, L., Rowen, L.: Grassman semialgebras and the Cayley–Hamilton theorem. Proc. AMS 7, 183–201 (2020). https://doi-org.sire.ub.edu/10.1090/bproc/53....
    • Gatto, L., Salehyan, P.: The boson-fermion correspondence from linear ODEs. J. Algebra 415, 162–183 (2014)
    • Gatto, L., Salehyan, P.: Hasse–Schmidt derivations on Grassmann Algebras, IMPA Monographs, vol. 4. Springer, Cham (with applications to vertex...
    • Gatto, L., Salehyan, P.: On Plücker equations characterizing Grassmann cones, Schubert varieties, equivariant cohomology and characteristic...
    • Gatto, L., Salehyan, P.: The cohomology of the Grassmannian is a gl_n-module. Commun. Algebra 48(1), 274–290 (2020)
    • Gatto, L., Salehyan, P.: Schubert derivations on the infinite exterior power. Bull. Braz. Math. Soc. New Ser. (2020). https://doi-org.sire.ub.edu/10.1007/s00574-020-00195-9
    • Gatto, L., Santiago, T.: Equivariant Schubert calculus. Ark. Mat. 48(1), 41–55 (2010)
    • Gatto, L., Scherbak, I.: Hasse–Schmidt derivations and Cayley–Hamilton theorem for exterior algebras. Functional analysis and geometry: Selim...
    • Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19(3), 943–1001 (1983)
    • Kac, V.G., Raina, A.K., Rozhkovskaya, N.: Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced...
    • Laksov, D.: Schubert calculus and equivariant cohomology of Grassmannians. Adv. Math. 217(4), 1869–1888 (2008)
    • Laksov, D., Thorup, A.: A determinantal formula for the exterior powers of the polynomial ring. Indiana Univ. Math. J. 56(2), 825–845 (2007)
    • Tian, Y.: Towards a categorical boson-fermion correspondence. Adv. Math. 365, 107034 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno