Ir al contenido

Documat


Desigualdades del tipo Hermite-Hadamard y Fejér para funciones fuertemente armónicas convexas

    1. [1] Universidad Centroccidental Lisandro Alvarado

      Universidad Centroccidental Lisandro Alvarado

      Venezuela

  • Localización: MATUA: Revista de matemática de la universidad del Atlántico, ISSN-e 2389-7422, Vol. 3, Nº. 2, 2016 (Ejemplar dedicado a: Revista de Matemática MATUA), págs. 33-46
  • Idioma: español
  • Títulos paralelos:
    • Hermite-Hadamard and Fejér type inequalities for strongly harmonically convex functions
  • Enlaces
  • Resumen
    • español

      Introducimos la noción de funciones fuertemente armónicas convexas y presentamos algunso ejemplos y propiedades de ésta clase. También, establecemos algunas desigualdades del tipo  Hermite-Hadamard and y Fejér para la clase introducida.

    • English

      We introduce the notion of strongly harmonically convex function and present some examples and properties of them. We also establish some Hermite-Hadamard and Fej\'er type inequalities for the class of strongly harmonically convex functions which generalizes previous results.

  • Referencias bibliográficas
    • M. Bessenyei and Zs. P´ales, Characterization of convexity via Hadamardâs inequality, Math. Inequal. Appl. 9 (2006), 53â62.
    • F. Chen and S. Wu, Fej´er and Hermite-Hadamard type inequalities for harmonically convex functions,Hindawi Publishing Corporation Journal...
    • S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Mathematica Moravica (2015), 107â121.
    • S. Dragomir and R. Agarwal, Two inequalities for diferentiable mappings and applications to special means of real numbers and to trapezoidal...
    • S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, 2000.
    • L. Fejér, U¨ ber die fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad.Wiss. (1906), 369â390.
    • A. Ghazanfari and S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, 2012.
    • J. Hadamard, étude sur les propri[U+FFFD]s des fonctions entiéres en particulier dune fonction considérée par Riemann, J. Math. Pures...
    • G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press., 1934.
    • J. Hiriart-Urruty and C. Lemar´echal, Fundamentals of convex analysis, Springer-Verlag, Berlin-Heidelberg, 2001.
    • I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics Volume 43(6)(2014),...
    • M.V. JovanoviËc, A note on strongly convex and strongly quasiconvex functions, Notes 60 (1996), 778â779.
    • M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchyâs equation and Jensenâs inequality, Second Edition,...
    • bibitem{14} N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes mathematicae,Volume 80, Issue 1 (2010), 193â199.
    • C. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear analysis (2012), 662â669.
    • C. Niculescu and L. Persson, Convex functions and their applications, A Contemporary Approach,CMS Books in Mathematics, vol. 23, Springer,...
    • A. Ostrowski, Uber die absolutabweichung einer
    • differentiebaren funktion vonihrem integralmittelwert, Comment. Math. Helv. 10 (1938), 226â227.
    • J. Pecaric, F. Proschan, and Y.L Tong, Convex functions, partial orderings and statistical applications,
    • Academic Press, Inc. Boston, 1992.
    • B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with
    • restrictions, Dokl. Akad. Nauk. SSSR 166 (1966), 287â290.
    • A. Roberts and D. Varberg, Convex functions, Academic Press, New York-London, 1973.
    • R.T. Rockafellar, Monotone operator and the proximal point algorithm, SIAM J. Control Optim 14 (1976), 888â898.
    • C. Zalinescu, Convex analysis in general vector spaces, World Scientific, New Jersey, 2002.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno