Ir al contenido

Documat


Which skills predict computational estimation?: A longitudinal study in 5- to 7-year-olds

  • Elke Sekeris [1] ; Lieven Verschaffel [1] ; Koen Luwel [1]
    1. [1] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

  • Localización: European journal of psychology of education, ISSN-e 1878-5174, ISSN 0256-2928, Vol. 37, Nº 1, 2022, págs. 19-38
  • Idioma: inglés
  • DOI: 10.1007/s10212-021-00553-1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Computational estimation is seen as an important mathematical competence. Little is known, however, about the mathematical skills that are predictive of early computational estimation development. The current study longitudinally followed a group of about 350 children at four time points: second (K2, 4-year-olds) and third grades of kindergarten (K3, 5-year-olds) and first (P1, 6-year-olds) and second (P2, 7-year-olds) grades of primary school. The computational estimation task was administered in two variants: a nonverbal variant, in which the problems were presented with manipulatives and children also answered using manipulatives was administered in K3 and P1; and a verbal variant, in which the problems were presented with Arabic numerals and children had to answer verbally was administered in P1 and P2. Furthermore, children’s basic numerical skills and exact and approximate arithmetic skills were assessed in K2 and K3, respectively. Path analysis showed a positive autoregressive relationship between the verbal variants of the computational estimation task but not between the nonverbal ones. Basic numerical skills were important predictors for computational estimation at all time points. Approximate arithmetic positively contributed to nonverbal estimation, while exact arithmetic positively predicted verbal estimation. In sum, solid basic numerical and arithmetic skills support children when performing computational estimation. Future intervention research should further unravel the causal contribution of each of these basic numerical and arithmetic skills.

  • Referencias bibliográficas
    • Alloway, T. P., Gathercole, S. E., & Pickering, S. J. (2006). Verbal and visuospatial short-term and working memory in children: Are they...
    • Andrews, P., & Sayers, J. (2015). Identifying opportunities for grade one children to acquire foundational number sense: Developing a...
    • Bailey, D. H., Duncan, G. J., Watts, T., Clements, D. H., & Sarama, J. (2017). Risky business: Correlation and causation in longitudinal...
    • Bakker, M., Torbeyns, J., Wijns, N., Verschaffel, L., & De Smedt, B. (2018). Gender equality in 4- to 5-year-old preschoolers’ early numerical...
    • Barth, H., La Mont, K., Lipton, J., & Spelke, E. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National...
    • Berch, D. B. (2005). Making sense of number sense: implications for children with mathematical disabilities. Journal of Learning Disabilities,...
    • Caviola, S., Mammarella, I. C., Cornoldi, C., & Lucangeli, D. (2012). The involvement of working memory in children’s exact and approximate...
    • Clements, D. H., & Sarama, J. (2011). Early childhood mathematics intervention. Science, 333(6045), 968–970.
    • Common Core State Standards Initiative. (2010). Common core state standards for mathematics. Retrieved from http://www.corestandards.org/Math/
    • Corsi, P.M. (1972). Human memory and the medial temporal region of the brain (Unpublished doctoral dissertation). McGill University, Canada.
    • Cowan, R. (2003). Does it all add up? Changes in children’s knowledge of addition combinations, strategies and principles. In A. J. Baroody...
    • De Smedt, B., & Gilmore, C. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical...
    • Department for Education. (2013). The national curriculum in England: Key stages 1 and 2 framework document. Retrieved from https://www.gov.uk/government/collections/national-curriculum
    • Departement Onderwijs en Vorming (2016). Onderzoek naar kleuterparticipatie. Eindrapport. [Research on kindergarten participation. Final report].Retrieved...
    • Deschuyteneer, M., De Rammelaere, S., & Fias, W. (2005). The addition of two-digit numbers: exploring carry versus no-carry problems....
    • Dowker, A. (2003). Young children’s estimates for addition: The zone of partial knowledge and understanding. In A. J. Baroody & A. Dowker...
    • Dowker, A. (1997). Young children’s addition estimates. Mathematical Cognition, 3(2), 141–153.
    • Duncan, G. J., Dowsett, C. J., Claessens, A. Magnuson, K., Huston, A. C., Klebanov, P., Pagani, L. S., Feinstein, L., Engel, M., Brooks-Gunn,...
    • Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986.
    • Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental...
    • Gilmore, C. (2015). Approximate arithmetic abilities in childhood. In R. Cohen Kadosh & A. Dowker (Eds.), The Oxford handof mathematical...
    • Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition. London, United Kingdom: Routledge.
    • GO. (1998). Leerplan wiskunde lager onderwijs. [Math curriculum primary education] Retrieved from http://pro.g-o.be/pedagogische-begeleiding/basisonderwijs/leerplannen-basisonderwijs/wiskunde
    • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.
    • Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive internet-based...
    • Heck, R. H., Thomas, S. L., & Tabata, L. N. (2014). Multilevel and longitudinal modeling with IBM SPSS (2nd ed.). Routledge.
    • Hu, L., & Bentler, P. M. (2009). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives....
    • Jordan, J., Mulhern, G., & Wylie, J. (2009a). Individual differences in trajectories of arithmetical development in typically achieving...
    • Jordan, N. C., Kaplan, D., Oláh, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of...
    • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009b). Early math matters: Kindergarten number competence and later mathematics...
    • Katholiek Onderwijs Vlaanderen. (2018). Zin in leren, zin in leven: Generieke doelen. [Pleasure for learning. Pleasure for leaving. Curriculum...
    • Lemaire, P., & Brun, F. (2014). Effects of strategy sequences and response-stimulus intervals on children’s strategy selection and strategy...
    • Lemaire, P., & Lecacheur, M. (2002). Children’s strategies in computational estimation. Journal of Experimental Child Psychology, 82(4),...
    • Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1-6. Developmental...
    • Ministerie van Onderwijs, Cultuur en Wetenschap. (2006). Kerndoelen primair onderwijs. [Key objectives primary education]. Retrieved from...
    • Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s guide (8th ed.). Muthén & Muthén.
    • NCTM. (2000). Principles and standards for school Mathematics. The National Council of Teachers of Mathematics, Inc..
    • Nesbitt, K. T., Fuhs, M. W., & Farran, D. C. (2019). Stability and instability in the co-development of mathematics, executive function...
    • Northcote, M., & McIntosh, A. (1999). What mathematics do adults really do in everyday life? Australian Primary Mathematics Classroom,...
    • Purpura, D. J., & Lonigan, C. J. (2013). Informal numeracy skills: The structure of and relations among numbering, relations, and arithmetic...
    • Reys, R. E., Bestgen, B. J., Rybolt, J. F., & Wyatt, J. W. (1982). Processes used by good computational estimators. Journal for Research...
    • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and...
    • Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & De Smedt, B. (2017). Associations of non-symbolic and...
    • Seethaler, P. M., & Fuchs, L. S. (2006). The cognitive correlates of computational estimation skills among third-grade students. Learning...
    • Sekeris, E., Verschaffel, L., & Luwel, K. (2020a). Exact arithmetic, computational estimation, and approximate arithmetic are different...
    • Sekeris, E., Empsen, M., Verschaffel, L., & Luwel, K. (2020b). The development of computational estimation in the transition from informal to...
    • Siegler, R. S., & Booth, J. L. (2005). Development of numerical estimation: A review. In J. I. D. Campbell (Ed.), Handof mathematical...
    • Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., Susperreguy, M. I., & Chen, M. (2012). Early...
    • Sowder, J. (1992). Estimation and number sense. In D. A. Grouws (Ed.), Handof research on mathematics teaching and learning (pp. 371–389)....
    • Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alfa. International Journal of Medical Education, 2, 53–55.
    • van den Heuvel-Panhuizen, M. (2000). Schattend rekenen. In van den Heuvel-Panhuizen, M., Buys, K., & Treffers, A. (Red.), Kinderen leren...
    • Wechsler, D., Hendriksen, J., & Hurks, P. (2011). Wechsler preschool and primary scale of intelligence – III – NL. Pearson.
    • Xenidou-Dervou, I., De Smedt, B., van der Schoot, M., & van Lieshout, E. C. D. M. (2013). Individual differences in kindergarten math...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno