Ir al contenido

Documat


Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning

  • Enrique García Salcines [1] ; Cristóbal Romero Morales [1] ; Sebastián Ventura Soto [1] ; Carlos de Castro Lozano [1]
    1. [1] Universidad de Córdoba

      Universidad de Córdoba

      Cordoba, España

  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 3, Nº. 1, 2008, págs. 19-30
  • Idioma: español
  • Títulos paralelos:
    • Collaborative recommender system using distributed rule mining for improving web-based adaptive courses.
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Nowadays, the application of data mining techniques in e-learning and web based adaptive educational systems is increasing exponentially. The discovered useful information can be used directly by the teacher or the author of the course to improve the instructional/learning performance. This can be an arduous task and therefore educational recommender systems are used in order to help the teacher in this task. In this paper we describe a recommender system oriented to suggest the most appropriate modifications to the teacher in order to improve the effectiveness of the course. We propose to use a cyclical methodology to develop and carry out the maintenance of web-based courses in which we have added a specific data mining step. We have developed a distributed rule mining system in order to discover information in the form of IFTHEN recommendation rules about the web courses. We have used an iterative and interactive association rule algorithm without parameters and with a weight-based evaluation measure of the rule interest. And we have used a collaborative recommender system to share and score the obtained recommendation rules in one specific course between teachers of other similar courses and some experts in education. Finally, we have carried out several experiments with real students in order to determine the effectiveness of the proposed system and the utility of the recommended rules.

  • Referencias bibliográficas
    • Itmazi, J.A.S., “Sistema Flexible de gestión del e-learning para soportar el aprendizaje en las universidades tradicionales y abiertas”. PhD...
    • Brusilovsky, P. “Adaptive and Intelligent Web-based Educational Systems”, International Journal of Artificial Intelligence in Education, 2003,...
    • Brusilovsky, P., “Methods and techniques of adaptive hypermedia”,User Modeling and User-Adapted Interaction, 6(2-3), 1996, pp. 87-129
    • De Bra, P. & Calvi, L., “AHA! An open Adaptive Hipermedia Architecture”, The New Review of Hipermedia and Multimedia, 4,1998, pp. 115-139.
    • Brusilovsky, P., Schwarz, E., & Weber, G., “ELM-ART: An intelligent tutoring system on World Wide Web”, Third International Conference...
    • Heift, T., & Nicholson, D., “Web delivery of adaptive and interactive language tutoring”, International Journal of Artificial Intelligence...
    • Costaguta R., “Una Revisión de Desarrollos Inteligentes para Aprendizaje Colaborativo Soportado por Computadora”. Revista Ingeniería Informática,...
    • Herín, D., Sala M., Pompidor, P. “Evaluating and Revising Courses from Web Resources Educational”. ITS 2002, LNCS 2363, pp. 208-218. 2002.
    • Zaïne, O.R., Han, J. “Implementation of a Web Usage Mining Framework for Web Activity Evaluation”. Tele Learning Conference2000. pp. 13-21.
    • Zhang C., Zhang S., Association Rule Mining. Berlin: Springer,2002, ch. 7.
    • W. Klösgen, J.M. Zytkow. Handbook of Data Mining and Knowledge Discovery. Oxford University Press. 2002.
    • Srivastava, J.; Mobasher, B.; Cooley, R., “Automatic Personalization Based on Web Usage Mining”, Communications of the Associationof Computing...
    • Barnett, V.; Lewis, T.; Outliers in Statistical Data. John Wiley &Sons, 1994.
    • Romero, C., Ventura, S., Bra, P. D., & de Castro, C., “Discovering prediction rules in AHA! Courses”, En 9th International User Modeling...
    • Li, J.; Zaiane, O.R. “Combining Usage, Content and Structure Datato Improve Web Site Recommendation”, Int. Conf. on Electronic Commerce and...
    • Agrawal, R., et al, “Fast discovery of association rules”, In Advancesin Knowledge Discovery and Data Mining, Menlo Park, CA: AAAI Press,...
    • Zheng Z., et al, “Real world performance of association rules”. In Proceedings of the Sixth ACM-SIGKDD, 2001.
    • Tobias S., “Finding Association Rules That Trade Support Optimally against Confidence”, Lecture Notes in Computer Science, Vol. 2168,2001,...
    • Tan P., Kumar V., “Interesting Measures for Association Patterns: A Perspectiva”, Technical Report TR00-036. Department of Computer Science....
    • Silberschatz, A., Tuzhilin, A.. “What makes pattterns interesting in Knoledge discovery systems”., IEEE Trans. on Knowledge and Data Engineering....
    • Liu B., Wynne H., Shu C. Yiming M., “Analyzing the Subjective Interestingness of Association Rules”, IEEE Inteligent System, 2000.
    • A. Savasere, E. Omiecinski, and S. B. Navathe, “An efficient algorithm for mining association rules in large databases,” in Proceedings of...
    • P. Scheuermann, “Distributed web log mining using maximal large ítem sets,” Knowledge and Information Systems, vol. 3, no. 4, Nov.2001, pp....
    • D. B. Skillicorn and Y. Wang, “Parallel and sequential algorithms for data mining using inductive logic,” Knowledge and Information Systems,...
    • D. W.-L. Cheung, V. Ng, A. W.-C. Fu, and Y. Fu, “Efficient mining of association rules in distributed databases,” IEEE Transactions on Knowledge...
    • Zan, H. et al, “A graph model for E-commerce Recomendador systems,” Journal of the American Society of Information Scienceand Technology,...
    • Eliassi-Rad, T. and Shavlik, J., “A System for Building IntelligentAgents that Learn to Retrieve and Extract Information,”International Journal...
    • Geyer-Schulz, A. et al., “An Architecture for Behavior-BasedLibrary Recomendador Systems,” Information Technology andLibraries. 22(4), 2003,...
    • Rosta F., Brusilovsky, P., “Social navigation support in a course recommendation system”, Adaptive Hypermedia and Adaptive Web-Based Systems:...
    • Tang T., McCalla, G., “Smart Recommendation for an Evolving ELearningSystem: Architecture and Experiment”. International Journal on E-Learning,...
    • Terveen, L. and Hill, W., “Beyond Recomendador Systems: HelpingPeople Help Each Other”. In J. M. Carroll (Ed.) Human-ComputerInteraction in...
    • Burke, R., “Semantic ratings and heuristic similarity for collaborative filtering”, In Proceedings of the Seventeenth National Conference...
    • Burke, R,. “Knowledge-based Recomendador Systems”. In A. Kent(ed.), Encyclopedia of Library and Information Systems. Vol. 69,Supplement 32....
    • Data Mining Group. Predictive Model Markup Language (PMML).Disponible en Abril de 2008 en http://www.dmg.org/pmml-v3-0.html.
    • García, E., Romero, C. et al, “Using Rules Discovery for theContinuous Improvement of e-Learning Courses”, en Proc. of the 7thInternational...
    • Good I., Probability and the weighting of evidence. Charles Griffin,London, 1950.
    • De Castro, C., García, E., Romero, C., Ventura, S. “Herramienta autor INDESAHC para la creación de cursos hipermedia adaptativos”. Revista...
    • H. Liu, F. Hussain, C.L. Tan, and M. Dash. “Discretization: Anenabling technique”. Journal of Data Mining and Knowledge Discovery, 2002, pp....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno