Ir al contenido

Documat


Frequency polygons for random fields (density estimation for random fields)

  • Carbon, Michel [1]
    1. [1] Université de Rennes 2, France; and Directeur du D´épartement de Statistique, E.N.S.A.I., Rue Blaise Pascal, 35172 Bruz, France
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 14, Nº. 2, 2007 (Ejemplar dedicado a: Revista de Matemática: Teoría y Aplicaciones), págs. 105-122
  • Idioma: inglés
  • DOI: 10.15517/rmta.v14i2.39304
  • Enlaces
  • Resumen
    • español

      El propósito de este artículo es el de investigar el polígono de frecuencias como estimador de densidad para campos aleatorios indexados por un espacio de puntos en un retículo multidimensional. Se deriva la anchura óptima del compartimiento que asintóticamente minimiza los errores integrados (IMSE, por sus siglas en inglés). Bajo condiciones débiles, los polígonos de frecuencia alcanzan la misma tasa de convergencia hacia cero del IMSE como estimadores de núcleo. También pueden alcanzar la tasa óptima de convergencia uniforme bajo condiciones generales. Luego, los polígonos de frecuencia parecen ser entonces muy buenos estimadores de densidad con respecto a ambos criterios, de IMSE y convergencia uniforme.

    • English

      The purpose of this paper is to investigate the frequency polygon as a density estimator for stationary random fields indexed by multidimensional lattice points space. Optimal bin widths which asymptotically minimize integrated errors (IMSE) are derived. Under weak conditions, frequency polygons achieve the same rate of convergence to zero of the IMSE as kernel estimators. They can also attain the optimal uniform rate of convergence under general conditions. Frequency polygons thus appear to be very good density estimators with respect to both criteria of IMSE and uniform convergence.

  • Referencias bibliográficas
    • Bolthausen, E. (1982) “On the central limit theorem for stationary random fields”, Ann. Probab. 10: 1047–1050.
    • Bradley, R.C. (1986) “Basic properties of strong mixing conditions. In : Dependence in Probability and Statistics, vol 11, Birkh¨auser: 165–192.
    • Carbon, M., Tran, L.T. and Wu, B. (1997) “Kernel density estimation for random fields (Density estimation for random fields)”, Statistics...
    • Carbon, M., Hallin, M. and Tran, L.T. (1996) “Kernel density estimation for random fields: The L1 theory”, Journal of Non Parametric Statistics...
    • Carbon, M. (2006) “Polygones des fréquences pour des champs aléatoires”, Comptes Rendus de l’Académie des Sciences de Paris, A paraître.
    • Davydov, Yu A. (1970) “The invariant principle for stationary processes”, Theor. Probab. Appl. 14: 487–498.
    • Gorodetskii, V.V. (1977) “On the strong mixing property for linear sequences”, Theory Probability Appl. 22: 411–413.
    • Guyon, X.; Richardson, S. (1984) “Vitesse de convergence du théorème de la limite centrale pour des champs faiblement dépendants”, Z. Wahrsch....
    • Guyon, X. (1987) “Estimation d’un champ par pseudo-vraisemblance conditionnelle: Etude ´ asymptotique et application au cas Markovien”, Proc....
    • Hall, P.; Hannan, E.J. (1988) “On stochastic complexity and nonparametric density estimation”, Biometrika 75: 705–714.
    • Ibragimov, I. A.; Linnik, Yu. V. (1971) Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
    • Masry, E.; Gy¨orfi (1987) “Strong consistency and rates for recursive density estimators for stationary mixing processes”, J. Multivariate...
    • Nahapetian, B. S. (1980) “The central limit theorem for random fields with mixing conditions”, in: R. L. Dobrushin & Ya G. Sinai (Eds.)...
    • Nahapetian, B. S. (1987) “An approach to proving limit theorems for dependent random variables”, Theory Prob. Appl. 32: 535–539.
    • Neaderhouser, C. C. (1980) “Convergence of block spins defined on random fields”, J. Statist. Phys. 22: 673–684.
    • Politis, D. N.; Romano, J. P. (1993). “Nonparametric resampling for homogeneous strong mixing random fields”, J. Multivariate Anal. 47: 301–328.
    • Rio, E. (1995) “The functional law of the iterated logarithm for stationary strongly mixing sequences”, Ann. Prob. 23: 1188–1203.
    • Robinson, P.M. (1983) “Nonparametric estimators for time series”, J. Time Series Anal. 4: 185–207.
    • Rosenblatt, M. (1985) Stationary Sequences and Random Fields. Birkhäuser, Boston.
    • Roussas, G.G. (1969) “Nonparametric estimation of the transition distribution of a Markov process”, Ann. Inst. Statist. Math. 21: 73–87.
    • Roussas, G.G. (1988) “Nonparametric estimation in mixing sequences of random variables”, Jour. Statist. Plann. Inference 18: 135–149.
    • Scott, D.W. (1985) “Frequency polygons, theory and applications”, J. Amer. Stat. Assoc. 80: 348–354.
    • Stone, C.J. (1983) “Optimal unifom rate of convergence for non parametric estimators of a density function and its derivative”, in: M.H. Revzi,...
    • Takahata, H. (1983) “On the rates in the central limit theorem for weakly dependent random fields”, Z. Wahrsch. Verw. Gebiete 62: 477–480.
    • Tran, L.T. (1990) “Kernel density estimation on random fields”, J. Multivariate Anal. 34: 37–53.
    • Tran, L.T.; Yakowitz, S. (1993) “Nearest neighbor estimators for random fields”, J. Multivariate Anal. 44: 23–46.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno