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Abstract

The purpose of this paper is to investigate the frequency polygon as a density esti-
mator for stationary random fields indexed by multidimensional lattice points space.
Optimal bin widths which asymptotically minimize integrated errors (IMSE) are de-
rived. Under weak conditions, frequency polygons achieve the same rate of convergence
to zero of the IMSE as kernel estimators. They can also attain the optimal uniform
rate of convergence under general conditions. Frequency polygons thus appear to
be very good density estimators with respect to both criteria of IMSE and uniform
convergence.
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Resumen

El propósito de este art́ıculo es el de investigar el poĺıgono de frecuencias como
estimador de densidad para campos aleatorios indexados por un espacio de puntos en
un ret́ıculo multidimensional. Se deriva la anchura óptima del compartimiento que
asintóticamente minimiza los errores integrados (IMSE, por sus siglas en inglés). Bajo
condiciones débiles, los poĺıgonos de frecuencia alcanzan la misma tasa de convergencia
hacia cero del IMSE como estimadores de núcleo. También pueden alcanzar la tasa
óptima de convergencia uniforme bajo condiciones generales. Luego, los poĺıgonos de
frecuencia parecen ser entonces muy buenos estimadores de densidad con respecto a
ambos criterios, de IMSE y convergencia uniforme.
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1 Introduction

Our goal in this paper is to study frequency polygon as a density estimator for random
variables which show spatial interaction. We sense a practical need for nonparametric
spatial estimation for situations in which parametric families cannot be adopted with
confidence. The frequency polygon is constructed by connecting with straight lines the
mid-bin values of a histogram. So, the computational effort in constructing the frequency
polygon is about equivalent to the histogram.

Denote the integer lattice points in the N -dimensional Euclidean space by ZN , N ≥ 1.
Consider a strictly stationary random field {Xn} indexed by n in ZN and defined on some
probability space (Ω,F , P ). A point n in ZN will be referred to as a site. For a site i, we
denote ‖i‖ = (i21 + · · · + i2N )1/2. We will write n instead of n when N = 1. For two finite
sets of sites S and S′, the Borel fields B(S) = B(Xn,n ∈ S) and B(S′) = B(Xn,n ∈ S′)
are the σ-fields generated by the random variables Xn with n ranging over S and S′

respectively. Denote the Euclidean distance between S and S′ by dist (S, S′). We will
assume that Xn satisfies the following mixing condition: there exists a function ϕ(t) ↓ 0
as t → ∞, such that whenever S, S′ ⊂ ZN ,

α(B(S),B(S′)) = sup{|P (AB) − P (A)P (B)|, A ∈ B(S), B ∈ B(S′)} (1)

≤ h(Card(S),Card(S′))ϕ(dist (S, S′)),

where Card(S) denotes the cardinality of S. Here h is a symmetric positive function
nondecreasing in each variable. Throughout the paper, assume that h satisfies either

h(n,m) ≤ min{m,n} (2)

or
h(n,m) ≤ C(n + m + 1)k̃ (3)

for some k̃ ≥ 1 and some C > 0. If h ≡ 1, then Xn is called strongly mixing. Conditions
(1.2) and (1.3) are the same as the mixing conditions used by Neaderhouser (1980) and
Takahata (1983) respectively and are weaker than the uniform mixing condition used by
Nahapetian (1980). They are satisfied by many spatial models. Examples can be found in
Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987). For relevant works on random
fields, see e.g. Neaderhouser (1980), Bolthausen (1982), Guyon and Richardson (1984),
Guyon (1987), Nahapetian (1987), Tran (1990), Tran and Yakowitz (1993), Carbon, Hallin
and Tran (1996), Carbon, Tran and Wu (1997).

Denote by In a rectangular region defined by

In = {i : i ∈ ZN , 1 ≤ ik ≤ nk, k = 1, . . . , N}.

Assume that we observe {Xn} on In.
Suppose Xn takes values in R and has an uniformly continuous density f . We write

n → ∞ if
min{nk} → ∞ and |nj/nk| < C (4)
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for some 0 < C < ∞, 1 ≤ j, k ≤ N . All limits are taken as n → ∞ unless indicated
otherwise.
Define n̂ = n1 . . . nN .

Under weak dependence conditions, frequency polygons are shown to achieve the rate
of convergence to zero of order n̂−4/5 with respect to the criterion of IMSE. In the case
N = 1, histograms can only achieve the slower rate of convergence of the IMSE of order
n−2/3. It is also established that frequency polygons attain the uniform rate of conver-
gence (n−1 log n)1/3 under appropriate smoothness conditions. This is the optimal rate
of convergence for nonparametric estimators of a density function in the i.i.d. case (see
Stone (1983)). We here obtain similar results for random fields. Frequency polygons thus
appear to be very good density estimators with respect to both criteria of IMSE and
uniform convergence. For background material on frequency polygons, see Scott (1985).

Our paper is organized as follows: Section 2 provides some preliminaries and back-
ground material. The optimal choice of the bin width which asymptotically minimizes the
integrated mean square error is derived in Section 3. Theorem 3.1 generalizes results of
Scott (1985), and Carbon, Garel and Tran (1996). In Section 4, the asymptotic variance
of the frequency polygon fn is obtained. Weak conditions for the uniform convergence
of fn on R are obtained in Section 5. Finally, sharp rates of uniform convergence are
established in Section 6.

We use x to denote a fixed point of R. The integer part of a number a is denoted by
[a]. The letter C will be used to denote constants whose values are unimportant. The
letter D denotes an arbitrary set in R.

Denote Ψn = max (b; (log n̂(n̂b)−1)1/2).

2 Preliminaries

Consider a partition · · · < x−2 < x−1 < x0 < x1 < x2 < · · · of the real line into equal
intervals Ik = [(k − 1)b, kb) of length b = bn, where bn is the bin width. Without loss
of generality, we assume that there is a mesh node at zero. Consider the two adjacent
histogram bins I0 = [−b, 0) and I1 = [0, b). Denote the number of observations falling in
these intervals respectively by ν0 and ν1. The values of the histogram in these previous
bins are given by f0 = ν0n̂−1b−1 and f1 = ν1n̂−1b−1. The frequency polygon fn(x) is
given by

fn(x) =
(

1
2
− x

b

)
f0 +

(
1
2

+
x

b

)
f1, for − b

2
≤ x <

b

2
. (5)

We assume that b tends to zero as n → ∞. Define

Yi,k(x) =
{

1, if Xi ∈ Ik(x);
0, otherwise.

Then,
ν0 =

∑

i∈In

Yi,0(x) and ν1 =
∑

i∈In

Yi,1(x).

Let U = u(Xi) and V = v(Xj), where u and v be are real-valued measurable functions.
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Lemma 2.1 Suppose that |u| ≤ C1 and |v| ≤ C2 where C1 and C2 are constants. Then

|EUV − EUEV | ≤ Ch(Card(S),Card(S′))ϕ(dist (S, S′)).

Lemma 2.2 Suppose that ‖U‖r < ∞ and ‖V ‖s < ∞ where ‖U‖r = (E|U |r)1/r. If
r−1 + s−1 + h−1 = 1, then

|EUV − EUEV | ≤ C‖U‖r‖V ‖s{h(Card(S),Card(S′))ϕ(dist (S, S′))}1/h.

One or both of r and s can be taken to be ∞ for bounded random variables. For the
proof of the Davydov inequality in Lemma 2.2, see Davydov (1970), Deo (1973), Hall and
Heyde (1980) or Tran (1990).

Denote ηi,k(x) = Yi,k(x) − EYi,k(x).

Corollary 1 For each integer k, there exists some ξk ∈ Ik such that

(i) |cov(ηi,k(x), ηj,k(x)| ≤ C(f(ξk)b)1/2(ϕ(‖i − j‖))1/2,

(ii) |cov(ηi,k−1(x), ηj,k(x)| ≤ C(f(ξk)b)1/2(ϕ(‖i − j‖))1/2

Proof. (i) Taking r = 2, s = ∞ and h = 2, Lemma 2.2 leads to the following result: if
E|U |2 < +∞ and P (|V | > 1) = 0, then

|EUV − EUEV | ≤ C‖U‖2{ϕ(‖j − i‖)}1/2.

Taking U = Yi,k(x) and V = Yj,k(x), then

‖U‖2 = (EYi,k)
1/2 = (P [X1 ∈ Ik])

1/2 = (f(ξk)b)
1/2, where ξk ∈ Ik.

The proof of (i) thus follows.
(ii) The proof can be handled in the same way. Note that ξk is independent of i and

j. �

Denote the conditional density of Xj given Xi by fj|i for simplicity.
Assumption 1. For all i, j and some constant M1,

sup
(x,y)∈R×R

fj|i(y|x) ≤ M1.

Example. In the case N = 1, let Xt be a stationary autoregressive process of order 1,
for example, Xt = θXt−1 + et where |θ| < 1. Asssume the et’s are i.i.d. random variables
and each et has a standard Cauchy density. Then

Xj = θj−iXi + Z,

where Z is a Cauchy r.v. independent of Xi (see Example 2.1 in Tran (1989)) with
characteristic function

exp(−|u|(1 − θj−i)/(1 − θ))
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The conditional density of Xj given Xi is equal to

fj|i(xj |xi)) = fZ(xj − θj−ixi).

A Cauchy density symmetric about zero takes on its maximum value at zero. Thus we
can take

M1 =
1

π(1 − |θ|) .

Lemma 2.3 If Assumption 1 is satisfied, then
∫ ∫

IkxIk

|fi,j(x, y) − f(x)f(y)| dx dy ≤ Mf(ζk)b2 with ζk ∈ Ik. (6)

Proof. Since f is uniformly continuous and integrable,

sup
x∈R

f(x) ≡ ‖f‖ < ∞.

By Assumption 1, ∫ ∫

IkxIk

|fi,j(x, y) − f(x)f(y)| dx dy

≤
∫ ∫

IkxIk

f(x)
∣∣fj|i(y|x) − f(y)

∣∣ dx dy

≤ Mb

∫

Ik

f(x)dx,

where M can be taken to be max{M1, ‖f‖}. The lemma follows by the mean-value theo-
rem. �

3 Integrated mean squared error and optimal bin width

For convenience, we define the roughness of the k-th derivative of f by

Rk(f) =
∫ +∞

−∞
[f (k)(x)]

2
dx,

and
pk =

∫

Ik

f(x) dx.

As usual, the IMSE is defined as the sum of two terms: the integrated pointwise squared
bias, and the integrated pointwise variance. Define

q1n =
1

n̂2b2

∑

i 6=j

cov(ηi,0, ηj,0),
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q2n =
1

n̂2b2

∑

i 6=j

cov(ηi,1, ηj,1),

q3n =
1

n̂2b2

∑

i 6=j

cov(ηi,0, ηjj,1).

Lemma 3.1 The variance of the frequency polygon fn(x) defined in (5) is given by

varfn(x) =
(

1
2
− x

b

)2[ 1
n̂b2

p0(1 − p0) + q1n

]
(7)

+
(

1
2

+
x

b

)2[ 1
n̂b2

p1(1 − p1) + q2in

]
+ 2

(
1
4
− x2

b2

)[
−p0p1

n̂b2
+ q3n

]
.

Proof. From the expression of the frequency polygon (5),

varfn(x) =
(1

2
− x

b

)2

varf0 +
(1

2
+

x

b

)2

varf1 + 2
(1

4
− x2

b2

)
cov(f0, f1).

Clearly,

varf0 =
1

n̂2b2
var


∑

i∈In

Yi,0




with
var

( ∑

i∈In

Yi,0

)
=

∑

i∈In

var
(
Yi,0

)
+

∑

i 6=j

cov(Yi,0, Yj,0)

= np0(1 − p0) +
∑

i 6=j

cov(ηi,0, ηj,0).

Similarly,

varf1 =
1

n̂2b2
var


∑

i∈In

Yi,1


 = np1(1 − p1) +

∑

i 6=j

cov(ηi,1, ηj,1).

We get also

cov(f0, f1) =
1

n̂2b2
cov

( ∑

i∈In

Yi,0,
∑

j∈In

Yj,1

)
=

1
n̂2b2

∑

i∈In

cov (Yi,0, Yi,1) + q3n.

But,
cov (Yi,0, Yi,1) = E (Yi,0Yi,1) − E (Yi,0) E (Yi,1) = −p0p1.

Summing up, we get (8). �
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Define
wk = max

(
(f(ξk))1/2,Mf(ζk)

)
. (8)

Lemma 3.2 Assume that ϕ(k) = O(k−ρ) for some ρ > 2N + (3/2). Let 0 < ε ≤
(2N − 1)(8N − 1)−1. Then

q1n + q2n + q3n ≤ Cn̂−1b−1+εw0.

Proof. By Corollary 1 and Lemma 2.3

|cov(ηi,0, ηj,0)| ≤ min{C(f(ξk))1/2b1/2(ϕ(‖i − j‖))1/2,Mf(ζ0)b2}.

Define

S1 = {i, j ∈ In | 0 < ‖i − j‖ ≤ Kn}
S2 = {i, j ∈ In | ‖i− j‖ > Kn}

Split
∑

i 6=j

∣∣∣ cov(ηi,0, ηj,0)
∣∣∣ into two separate summations J1 and J2 over sites S1 and S2.

Then ∑

i 6=j

∣∣∣ cov(ηi,0, ηj,0)
∣∣∣ ≤ J1 + J2.

Now, we have the following majorizations

J1 =
∑

i,j∈S1

∣∣∣ cov(ηi,0, ηj,0)
∣∣∣ ≤ Mf(ζ0)

∑

i,j∈S1

b2 ≤ Mf(ζ0)KN
n

Let KN
n = b(1−ε)/N . Thus

J1 ≤ Mf(ζ0) n̂ b1+ε (9)

Let now ν =
N

2
· 1 + 2ε

1 − ε
. Clearly

J2 =
∑

i,j∈S2

∣∣∣ cov(ηi,0, ηj,0)
∣∣∣

≤ C (f(ξ0))1/2 b1/2
∑

i,j∈S2

(ϕ(‖i − j‖))1/2

≤ C (f(ξ0))1/2 b1/2 n̂
∑

‖i‖>Kn

(ϕ(‖i‖))1/2

≤ C (f(ξ0))1/2 b1/2 n̂K−ν
n

∑

‖i‖>Kn

‖i‖ν(ϕ(‖i‖))1/2.

Since 0 < ε ≤ (2N − 1)(8N − 1)−1, we have ν ≤ N − 1
4

. Thus

∑

‖i‖>Kn

‖i‖ν(ϕ(‖i‖))1/2 ≤
∞∑

i=1

i−(2ρ−4N+1)/4 < +∞
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since ρ > 2N + 3/2 . Finally

J2 ≤ C (f(ξ0))1/2 b1/2 n̂K−ν
n ≤ C (f(ξ0))1/2 b1+ε

and ∑

i 6=j

∣∣∣ cov(ηi,0, ηj,0)
∣∣∣ ≤ C w0 n̂ b1+ε

Thus q1n and similarly q2n are bounded by C w0 n̂−1 b−1+ε. Using Corollary 1 (ii) and a
slight variation of (6) it can be shown that q3n is bounded by the same quantity. �

Assumption 2. f is twice continuously differentiable; f ′′ is absolutely continuous with
respect to the Lebesgue measure on R; f1/2 ∈ L1, f ′f−1/2 ∈ L1, f (k) ∈ L2 for
k = 0, 1, 2, 3. The following Lemma (see Scott (1985, p.350)) will be needed in the

sequel

Lemma 3.3 Suppose that φ is absolutely continuous on (−∞,∞) with almost everywhere
derivative φ′ and that φ, φ′ ∈ L1. Let ck be an arbitrary point in bin Ik. Then the following
sum exists and may be approximated by an integral

∞∑

k=−∞
φ(ck)b =

∫ ∞

−∞
φ(x)dx + O(b‖φ′‖1).

Lemma 3.4 Suppose Assumptions 1 and 2 are satisfied, and suppose that ϕ(k) = O(k−ρ)
for some ρ > 2N + (3/2). Let ε be as defined in Lemma 3.2. Then

∣∣∣∣
∫ +∞

−∞
varfn(x) dx − 2

3n̂b

∣∣∣∣ ≤
1
n̂

R0(f) (10)

+O(n̂−1bε[‖f ′‖1 + ‖(f1/2)′‖1 + b1−ε‖f‖2‖f ′‖2] + n̂−1b−1+ε[‖f1/2‖1 + ‖f‖1]).

Proof. Define mk ≡ f(ξk). By integration, we obtain from (8) the following result

∫ +b/2

−b/2
varf̂n(x) dx =

b

3

(m0

n̂b
− m2

0

n̂
+ q1n

)
+

b

3

(m1

n̂b
− m2

1

n̂
+ q2n

)
+

b

3

(
− m0m1

n̂
+ q3n

)

=
1
3n̂

(m0 + m1) −
b

3n̂
(m2

0 + m2
1 + m0m1) +

b

3
(q1n + q2n + q3n).

By Lemma 3.2,
(b/3)(q1n + q2n + q3n) ≤ Cn̂−1bεw0.

Now, sum over all bins. Observe that

∑

k

mkb =
∑

k

pk =
∫ +∞

−∞
f(x) dx = 1.
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With the help of Lemma 3.3 with ϕ replaced by f2, we get

∑

k

m2
kb =

∑

k

f2(ξk)b = R0(f) + O(b‖(f2)′‖1) = R0(f) + O(b‖f‖2‖f ′‖2).

Using the definition of wk in (8) and Lemma 3.3,

∑

k

wkb ≤ ‖f1/2‖1 + ‖Mf‖1 + O
(
b
(
‖f ′‖1 + ‖(f1/2)′‖1

))

and (10) follows. �

Lemma 3.5 If Assumptions 1 and 2 hold, then

∫ +∞

−∞
bias(x)2 dx =

49
2, 880

b4R2(f) + O
(
b5‖f ′′‖2‖f

′′′‖2

)
. (11)

Proof. Let Jk = [((k − (1/2)b), ((k + (1/2))b) be the k-th frequency polygon bin. If x is
a fixed point in J0, then

bias(x) =
1
6
b2

(
1
2
− x

b

)
f ′′(ξ0) +

1
6
b2

(
1
2

+
x

b

)
f ′′(ξ1) −

1
2
x2f ′′(ξx).

where ξ0, ξ1, ξx are points in J0. Lemma (11) follows by summing up the integrals of the
square of the biases over each bin as done in Scott (1985). �

Theorem 3.1 If Assumptions 1 and 2 hold and ϕ(k) = O(k−ρ) for some ρ > 2N +(3/2),
the value of the bin width that asymptotically minimizes the IMSE of the frequency polygon
is

b = bn = 2
(

15
49R2(f)

)1/5

n̂−1/5.

with corresponding

IMSE =
5
12

(49R2(f)
15

)1/5

n̂−4/5 + O(n̂−1).

Proof. The IMSE is found by combining the results of Lemmas 10 and 11. The leading
terms of the IMSE are found to be

2
3n̂b

+
49

2, 880
b4R2(f).

It is thus sufficient to minimize this function with respect to b. �
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It follows from Theorem 3.1 that frequency polygons can achieve the rate of convergence
to 0 of order n̂−4/5 with respect to the criterion of integrated mean square error. This is
the same rate of convergence to zero of the IMSE of non-negative kernel estimators in the
case N = 1.
Remark 3.1. It is possible to obtain Theorem 3.1 without the assumption of the third
derivative of f in Assumption 2. Let Ik = [(k − 1)b, kb] and Jk = [(k − .5)b, (k + .5)b],
k = 0,±1,±2, ... . Let λ be the probability measure associated with f . For any x ∈ Jk,

E[fn(X) − f(X)] = (k + .5 − x/b)λ(Ik)/b + (−k + .5 + x/b)λ(Ik+1)/b − f(x)
= T1k(x) + T2k(x) + T3k(x),

where we denote

T1k(x) = (k + .5 − x/b){λ(Ik)/b − f((k − .5)b)},

T2k(x) = (−k + .5 + x/b){λ(Ik+1)/b − f((k + .5)b)},

T3k(x) = (k + .5 − x/b)f((k − .5)b) + (−k + .5 + x/b)f((k + .5)b) − f(x).

Note that ∫

Jk

[T1k(x)]2dx ≤ Cb4

∫

Ik

∫ 1

0
[f ′′(tu + (1 − t)(k − .5)b)]2du dt.

Define
Ω(f ′′, u, ε) = sup{|f ′′(u + h)| : |h| ≤ ε}.

If we assume that either

lim
ε→0

∫ ∞

−∞
Ω2(f ′′, u, ε)du < ∞,

or

sup
0<ε<1

∫ ∞

−∞
Ω2(f ′′, u, ε)du < ∞.

Then it follows that
∑

−∞<k<∞
∫
Jk

[T1k(x)]2dx < ∞ by noting that

∑

−∞<k<∞

∫

Ik

∫ 1

0
[f ′′(tu + (1 − t)(k − .5)b)]2du dt < ∞.

This argument takes care of the term T1k(x) and T2k(x). Similar arguments can be used
to handle T3k(x).

4 Asymptotic variance of fn

Assumption 2∗. There exists a constant C > 0 such that
∣∣f(x) − f(x′)

∣∣ ≤ C
∣∣x − x′∣∣ for x, x′ ∈ R.
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Theorem 4.1 Let x be a point of the interval [−b/2, +b/2). If Assumptions 1 and 2∗ are
satisfied and ϕ(k) = O(k−ρ) for some ρ > 2N + (3/2), then

n̂ b varfn(x) −
(

1
2

+
2x2

b2

)
f(x) → 0.

Proof. Without loss of generality, take x ∈ [−b/2, b/2). By (8)

n̂ b varfn(x) =
(

1
2
− x

b

)2 [
p0(1 − p0)

b
+ n̂ b q1n

]
(12)

+
(

1
2

+
x

b

)2 [
p1(1 − p1)

b
+ n̂ b q2n

]
+ 2

(
1
4
− x2

b2

)[
−p0p1

b
+ n̂ b q3n

]
.

By Lemma 3.2,

n̂ b

∣∣∣∣∣

(
1
2
− x

b

)2

q1n +
(

1
2

+
x

b

)2

q2n + 2
(

1
4
− x2

b2

)
q3n

∣∣∣∣∣ ≤ C bεw0. (13)

Since p0 =
∫ 0
−b f(u) du, Assumption 2 implies that

max{0, f(x)b − Cb2} ≤ p0 ≤ f(x)b + Cb2.

Thus

max{0, f(x) − (C + f2(x))b + C2b3} ≤ p0(1 − p0)/b ≤ f(x) + (C − f2(x))b + C2b3. (14)

Notice that (14) holds also when p0 is replaced by p1. Using (12)-(14),

max
{

0,
(

1
2

+
2x2

b2

)
f(x) − A

}
≤ n̂ b varfn(x) ≤

(
1
2

+
2x2

b2

)
f(x) + B

with

A =
[
C

(
1
2

+
2x2

b2

)
+

4x2

b2
f2(x)

]
b −

(
1 − 4x2

b2

)
Cf(x)b2 − C2b3 − Cbεω0

and

B =
[
C

(
1
2

+
2x2

b2

)
− 4x2

b2
f2(x)

]
b −

(
1 − 4x2

b2

)
Cf(x)b2 + C2b3 + Cbεω0.

The lemma follows easily, because A and B tend to 0 as n → ∞. �
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5 Uniform convergence of the frequency polygon estimator

Define

∆i(x) = (n̂b)−1

[(1
2
− x

b

)
ηi,0(x) +

(1
2

+
x

b

)
ηi,1(x)

]
, (15)

In(x) =
∑

i∈In

E(∆i(x))2 and Rn(x) =
∑

j∈In

∑

i∈In

|Cov{∆i(x),∆j(x)}|

ik 6= jk for some k

Lemma 5.1 If ϕ(k) = O(k−ρ) for some ρ > 2N + (3/2), then

lim n̂b(In(x) + Rn(x)) < C,

where C is a constant independent of x.

Proof. Lemma 5.1 follows by a careful analysis of the proof of Lemma 3.2.

The following lemma of Rio (1993) will be needed in the sequel. Its proof is found in
Rio (1995) (see Theorem 4).

Lemma 5.2 Suppose A is a σ-field of (Ω,F , P ) and X is a real-valued random variable
taking a.s. its values in [a, b]. Suppose furthermore that there exists a random variable U
with uniform distribution over [0, 1], independent of A ∨ σ(X). Then there exists some
random variable X∗ independent of A and with the same distribution as X such that

E|X − X∗| ≤ 2(b − a)α(A, σ(X)).

Moreover, X∗ is a A∨ σ(X) ∨ σ(U)-measurable random variable.

The approximation of strongly mixing r.v.’s by independent ones used later is presented
below.

Lemma 5.3 Suppose S1, S2,...,Sr be sets containing m sites each with dist (Si, Sj) ≥ δ for
all i 6= j where 1 ≤ i ≤ r and 1 ≤ j ≤ r. Suppose Y1, Y2,...,Yr is a sequence of real-valued
r.v.’s measurable with respect to B(S1), B(S2),...,B(Sr) respectively and Yi takes values in
[a, b]. Then there exists a sequence of independent r.v.’s Y ∗

1 , Y ∗
2 ,...,Y ∗

r independent of Y1,
Y2,...,Yr such that Y ∗

i has the same distribution as Yi and satisfies

r∑

i=1

E|Yi − Y ∗
i | ≤ 2r(b − a)h((r − 1)m,m)ϕ(δ). (16)

Proof. Suppose δj , j ≥ 1 is a sequence of i.i.d. uniform [0, 1] r.v.’s independent of Yj, j ≥
1. Define Y ∗

1 = Y1. By Lemma 5.2, for every i ≥ 2, there exists a measurable function
fi such that Y ∗

i = fi(Y1, ..., Yi, δi). In addition, each Y ∗
i is independent of Y1, ..., Yi−1, has

the same distribution as Yi and satisfies

E|Yi − Y ∗
i | ≤ 2(b − a)α(σ(Y` : ` < i − 1), σ(Yi)) ≤ 2(b − a)h((i − 1)m,m)ϕ(δ).
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The last inequality follows by using (1). For 1 ≤ i ≤ r, we have h((i−1)m,m) ≤ h(rm,m)
since h is nondecreasing in each variable as stated in the introduction and (16) follows by
summing up on 1 ≤ i ≤ r.

It remains to show that Y ∗
1 , . . . , Y ∗

r are independent. To prove this it is sufficient
to show that Y ∗

i and (Y ∗
1 , . . . , Y ∗

i−1) are independent for i > 1. Note that (Y1, . . . , Yi),
δ1, . . . , δi are independent. Thus (Y1, . . . , Yi, δi), δ1, . . . , δi−1 are independent. Since Y ∗

i

is a measurable function of Y1, . . . , Yi, δi, it follows that (Y ∗
i , Y1, . . . , Yi−1), δ1, . . . , δi−1 are

independent. Now Y ∗
i is independent of Y1, . . . , Yi−1. Hence Y ∗

i , (Y1, . . . , Yi−1), δ1, . . . , δi−1

are independent. Finally Y ∗
i and (Y ∗

1 , . . . , Y ∗
i−1) are independent since (Y ∗

1 , . . . , Y ∗
i−1) is

measurable with respect to the σ-field generated by Y1, . . . , Yi−1, δ1, . . . , δi−1. �
Define

Sn(x) =
nk∑

ik=1
k=1,...,N

∆i(x). (17)

Then
Sn(x) = fn(x) − Efn(x). (18)

Without loss of generality assume that ni = 2pqi for 1 ≤ i ≤ N . The random variables
∆i(x) can be grouped into 2Nq1 × q2 × . . . × qN cubic blocks of side p. Denote

U(1,n, j, x) =
(2jk+1)p∑

ik=2jkp+1
k=1,...,N

∆i(x), (19)

U(2,n, j, x) =
(2jk+1)p∑

ik=2jkp+1
k=1,...,N−1

2(jN+1)p∑

iN=(2jN+1)p+1

∆i(x),

U(3,n, j, x) =
(2jk+1)p∑

ik=2jkp+1
k=1,...,N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

(2jN+1)p∑

iN=2jN p+1

∆i(x),

U(4,n, j, x) =
(2jk+1)p∑

ik=2jkp+1
k=1,...,N−2

2(jN−1+1)p∑

iN−1=(2jN−1+1)p+1

2(jN+1)p∑

iN=(2jN+1)p+1

∆i(x),

and so on. Note that

U(2N−1,n, j, x) =
2(jk+1)p∑

ik=(2jk+1)p+1
k=1,...,N−1

(2jN+1)p∑

iN=2jN p+1

∆i(x).

Finally

U(2N ,n, j, x) =
2(jk+1)p∑

ik=(2jk+1)p+1
k=1,...,N

∆i(x).
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For each integer 1 ≤ i ≤ 2N , define

T (n, i, x) =
qk−1∑

jk=0
k=1,...,N

U(i,n, j, x).

Clearly

Sn(x) =
2N∑

i=1

T (n, i, x). (20)

The blocking idea here is reminiscient of the blocking scheme in Tran (1990) and Politis
and Romano (1993).

Without loss of generality we will write all for i = 1. Now, T (n, 1, x) is the sum of

r = q1 × q2 × . . . × qN (21)

of the U(1,n, j, x)’s. Note that U(1,n, j, x) is measurable with the σ-field generated by Xi

with i belonging to the set of sites

{i : 2jkp + 1 ≤ ik ≤ (2jk + 1)p, k = 1, . . . , N}.

These sets of sites are separated by a distance of at least p. Enumerate the r.v.’s
U(1,n, j, x) and the corresponding σ-fields with which they are measurable in an arbitrary
manner and refer to them respectively as Y1, Y2, . . . , Yr and S1, S2, . . . , Sr. Approximate
Y1, Y2, . . . , Yr by the r.v.’s Y ∗

1 , Y ∗
2 , . . . , Y ∗

r as was done in Lemma 5.3. Clearly,

|Yi| < CpN (n̂b)−1. (22)

Denote
εn = η( log n̂(n̂b)−1)1/2,

where η is a constant to be chosen later.
Define αn = b h(n̂, pN )ϕ(p)( log n̂(n̂b)−1)−1/2.

Lemma 5.4 Given an arbitrarily large positive constant a, there exists a positive constant
C such that

P

[
sup
x∈D

|T (n, 1, xk)| > εn

]
≤ C(b−1n̂−a + αnb−1

Proof. Since T (n, 1, x) is equal to
∑r

i=1 Yi, we have

P [|T (n, 1, x)| > εn] ≤ P
[
|

r∑

i=1

Y ∗
i | > εn/2

]
+ P

[ r∑

i=1

|Yi − Y ∗
i | > εn/2

]
. (23)

We now proceed to obtain bounds for the two terms on the right hand side of (23).
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By Markov’s inequality and using (16), (22) and recall that the sets of sites with respect
to which the Yi’s are measurable are separated by a distance of at least p,

P

[
r∑

i=1

|Yi − Y ∗
i | > εn

]
≤ CrpN(n̂b)−1h(n̂, pN )ϕ(p)ε−1

n ∼ αn. (24)

Set
λn = (n̂b log n̂)1/2, (25)

p =
[( n̂b

4λn

)1/N
]
∼

(
n̂b

log n̂

) 1
2N

. (26)

A simple computation yields,

λnεn = η log n̂,

and by Lemma 5.1

λ2
n

r∑

i=0

E(Y ∗
i )2 ≤ Cn̂b(In(x) + Rn(x)) log n̂ < C log n̂.

Using (22), we have |λnY ∗
i | < 1/2 for large n̂. Applying Berstein’s inequality,

P
[
|

r∑

i=0

Y ∗
i | > εn

]
≤ 2 exp

(
− λnεn + λ2

n

r∑

i=0

E(Y ∗
i )2

)
(27)

≤ 2 exp ((−η + C) log n̂) ≤ n̂−a,

for sufficiently large n̂.
Combining (23), (24) and (27),

P [sup
x∈D

|T (n, 1, x)| > εn] ≤ C(b−1n̂−a + αnb−1).

�

Denote
θ1 =

ρ + 3N
ρ − 3N

, θ2 =
N − ρ

ρ − 3N

θ3 =
3N + ρ

ρ − N − 2Nk̃
, θ4 =

N − ρ

ρ − N − 2k̃N
.

Theorem 5.1 Suppose ϕ(k) = O(k−ρ) for some ρ > 0 holds.

(i) If (2) is satisfied and
n̂bθ1

n (log n̂)θ2 → ∞, (28)

(ii) or if (3) is satisfied and
n̂bθ3

n (log n̂)θ4 → ∞. (29)
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then
sup
x∈D

|fn(x) − Efn(x)| = O
(
( log n̂(n̂b)−1)1/2

)
in probability. (30)

Remark 5.1. For (28) to hold it is necessary that ρ > 3N since b = bn goes to zero.
Hence θ1 > 1 and (28) implies

n̂b → ∞. (31)

which is a condition for fn(x) to converge to f(x) in the case N = 1.
Similarly, it can be shown that (29) implies (31).

Proof of Theorem 5.1.
(i) To complete the proof, we will show that b−1n̂−a → 0 and αnb−1 → 0.
(31) implies b−1n̂−a → 0 for a > 1.
Moreover

b−1n̂−a ∼ b−(3N−ρ)/2N n̂(3N−ρ)/2N log n̂−(N−ρ)/2N (32)

and (28) is equivalent to (αnb−1)−1 → ∞, which implies αnb−1 → 0.
The proof of (ii) is similar. �

Theorem 5.2 Suppose ϕ(k) = O(k−ρ) for some ρ > 0 and Assumption 2∗ hold. If (2)
and (28) hold, or (3) and (29) hold, then

sup
x∈D

|fn(x) − f(x)| = O(Ψn) in probability.

Proof. By assumption 2∗,
sup
x∈D

|Efn(x) − f(x)| ≤ C b (33)

The proof follows easily from Theorem 5.1 and (33). �
Example 5.1.

(i) Take b = Cn̂−1/5 where b is the optimal bin width derived in Section 3. Then (28)
is satisfied if ρ > 9N/2, and (29) is satisfied if ρ > 2N + (5Nk̃)/2.

(ii) Take b = (n̂−1 log n̂)1/3. Then Ψn = (n̂−1 log n̂)1/3, which is the optimal rate for
the i.i.d. case for N = 1. Then (28) is satisfied if ρ > 6N , and (29) is satisfied if
ρ > 3N + Nk̃.

6 Rate of the a.s. convergence of fn

Let ε be an arbitrary small positive number and denote g(n) =
∏N

i=1(log ni)(log log ni)1+ε.
Clearly,

∑ 1
n̂g(n) < ∞, where the summation is over all n in ZN .

Define
θ∗1 =

ρ + 3N
ρ − 5N

, θ∗2 =
N − ρ

ρ − 5N

θ∗3 =
ρ + 3N

ρ − (2k̃ + 3)N
, θ4 =

N − ρ

ρ − (2k̃ + 3)N
.
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Theorem 6.1 Suppose ϕ(k) = O(k−ρ) for some ρ > 0 and Assumption 2∗ hold.

(i) If (2) is satisfied and

n̂b
θ∗1
n (log n̂)θ

∗
2 (g(n))−2N/(ρ−5N) → ∞, (34)

(ii) or if (3) is satisfied and

n̂b
θ∗3
n (log n̂)θ

∗
4 (g(n))−2N/(ρ−(2k̃+3)N → ∞. (35)

then
sup
x∈D

|fn(x) − f(x)| = O(Ψn) a.s. (36)

Proof.
(i) Condition (34) is equivalent to

b−1αnn̂g(n) → 0,

which entails ∑

n∈ZN

b−1αn < ∞.

The theorem folllows easily by the Borel-Cantelli lemma and (33).
(ii) The proof of (ii) is similar to that of (i) and is omitted. �
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pour des champs faiblement dépendants”, Z. Wahrsch. Verw. Gebiete 66: 297–314.



122 m. carbon Rev.Mate.Teor.Aplic. (2007) 14(2)

[9] Guyon, X. (1987) “Estimation d’un champ par pseudo-vraisemblance conditionnelle: Étude
asymptotique et application au cas Markovien”, Proc. 6th Franco-Belgian Meeting of Statis-
ticians.

[10] Hall, P.; Hannan, E.J. (1988) “On stochastic complexity and nonparametric density estima-
tion”, Biometrika 75: 705–714.

[11] Ibragimov, I. A.; Linnik, Yu. V. (1971) Independent and Stationary Sequences of Random
Variables. Wolters-Noordhoff, Groningen.

[12] Masry, E.; Györfi (1987) “Strong consistency and rates for recursive density estimators for
stationary mixing processes”, J. Multivariate Anal. 22: 79–93.

[13] Nahapetian, B. S. (1980) “The central limit theorem for random fields with mixing condi-
tions”, in: R. L. Dobrushin & Ya G. Sinai (Eds.) Adv. in Probability 6, Multicomponent
Systems: 531–548.

[14] Nahapetian, B. S. (1987) “An approach to proving limit theorems for dependent random
variables”, Theory Prob. Appl. 32: 535–539.

[15] Neaderhouser, C. C. (1980) “Convergence of block spins defined on random fields”, J. Statist.
Phys. 22: 673–684.

[16] Politis, D. N.; Romano, J. P. (1993). “Nonparametric resampling for homogeneous strong
mixing random fields”, J. Multivariate Anal. 47: 301–328.

[17] Rio, E. (1995) “The functional law of the iterated logarithm for stationary strongly mixing
sequences”, Ann. Prob. 23: 1188–1203.

[18] Robinson, P.M. (1983) “Nonparametric estimators for time series”, J. Time Series Anal. 4:
185–207.

[19] Rosenblatt, M. (1985) Stationary Sequences and Random Fields. Birkhäuser, Boston.
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