Ir al contenido

Documat


Analytical Traveling Wave and Soliton Solutions of the (2+1) Dimensional Generalized Burgers–Huxley Equation

  • Desta Leta, Temesgen [1] ; Liu, Wenjun [1] ; Rezazadeh, Hadi [2] ; Ding, Jian [1] ; El Achab, Abdelfattah [3]
    1. [1] Nanjing University of Information Science and Technology

      Nanjing University of Information Science and Technology

      China

    2. [2] Amol University of Special Modern Technologies
    3. [3] University Cadi Ayyad Bd. du Prince Moulay Abdellah
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 3, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00528-z
  • Enlaces
  • Resumen
    • This paper employs the modified Kudryashov method, Riccati-Bernoulli sub-ODE method and the bifurcation methods to study a nonlinear (2+1)—dimensional generalised Burgers–Huxley equation in inhomogeneous dispersive medium to construct exact traveling wave solutions. By applying the Galilean wave transformation we obtained an ordinary differential equations. As a result, we investigated the dynamical behaviour of new traveling wave solutions under different parameter conditions. The solutions obtained by these methods provide us a powerful tool for solving nonlinear evolution equations in various fields of applied sciences.

  • Referencias bibliográficas
    • 1. Gromov, E.M.: Propagation of short nonlinear wave packets and solitons in smoothly inhomogeneous media. Phys. Lett. A 227, 67–71 (1997)
    • 2. Yu, X., Gao, Y.-T., Sun, Z.-Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient...
    • 3. Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized Burgers-Huxley equation. J. Phys. A 23(3), 271–274 (1990)
    • 4. Satsuma, J., Ablowitz, M., Fuchssteiner, B., Kruskal, M.: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations. World Scientific...
    • 5. Scott, A.C.: Neurophysics. Wiley, New York (1977)
    • 6. Wang, X.Y.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112, 402–406 (1985)
    • 7. Kyrychko, Y.N., Bartuccelli, M.V., Blyuss, K.B.: Persistence of traveling wave solution of a fourth order diffusion system. J. Comput....
    • 8. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)
    • 9. Carey, A.B., Giles, R.H., McLean, R.G.: The land scape epidemiology of rabies in Virginia. Am. J. Trop. Med. Hyg. 27, 573–580 (1978)
    • 10. Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. Biological Engineering. McGraw-Hill, New York (1969)
    • 11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve....
    • 12. Bazsa, G., Epstein, I.R.: Traveling waves in the nitric acid-iron(II) reaction. J. Phys. Chem. 89, 3050– 3053 (1985)
    • 13. Yefimova, OYu., Kudryashov, N.A.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 68(3), 413–420 (2004)
    • 14. Estévez, P.G., Gordoa, P.R.: Painlevé analysis of the generalized Burgers-Hexley equation. J. Phys. A: Math. Gen. 23, 4831–4837 (1990)
    • 15. Estévez, P.G.: Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations. J. Phys. A Math....
    • 16. Korpinar, Z., Inc, M., Alshomrani, A.S., Baleanu, D.: On exact special solutions for the stochastic regularized long wave-Burgers equation....
    • 17. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlin. Sci. Numer. Simul....
    • 18. Lu, S., Guo, Y., Chen, L.: Periodic solutions for Liénard equation with an indefinite singularity. Nonlinear Anal. Real World Appl. 45,...
    • 19. Deng, X.: Travelling wave solutions for the generalized Burgers-Huxley equation. Appl.Math. Comput. 204(2), 733–737 (2008)
    • 20. Hashim, I., Noorani, M.S.M., Said Al-Hadidi, M.R.: Solving the generalized Burgers-Huxley equation using the Adomian decomposition method....
    • 21. Wazwaz, A.-M.: Analytic study on Burgers Fisher and Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2),...
    • 22. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Analytical treatment of gBH equation by homotopy analysis method. Bull. Malays. Math. Sci....
    • 23. Gao, H., Zhao, R.: New exact solutions to the generalized Burgers-Huxley equation. Appl. Math. Comput. 217(4), 1598–1603 (2010)
    • 24. Triki, H., Wazwaz, A.: Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Cent. Eur. J. Eng....
    • 25. Neeraj, K.T.: Analytical solution of two dimensional nonlinear space-time fractional Burgers-Huxley equation using fractional sub-equation...
    • 26. Shanmuga Priya, T., Gomathi, T.: Lie symmetries and classifications of (2+1)-dimensional potential Huxley equation. Internat. J. Crea....
    • 27. Javidi, M.: Spectral collocation method for the solution of the generalized Burger-Fisher equation. Appl. Math. Comput. 174, 345–352 (2006)
    • 28. Wazwaz, A.M.: The tanh method for generalized forms of nonlinear heat conduction and BurgersFisher equations. Appl. Math. Comput. 169,...
    • 29. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6),...
    • 30. Ege, S.M., Misirli, E.: Solutions of the space-time fractional foam-drainage equation and the fractional Klein-Gordon equation by use...
    • 31. Yang, X.-F., Deng, Z.-C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application....
    • 32. Leta, T.D., et al.: Dynamical behavior of traveling wave Solutions for a (2 + 1)-dimensional Bogoyavlenskii coupled system. Qual....
    • 33. Leta, T.D., Liu, W., El Achab, A.: Dynamics of singular traveling wave solutions of a short CapillaryGravity wave equation. J Appl. Anal....
    • 34. Li, J.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)
    • 35. Leta, T.D., Li, J.: Various exact soliton solutions and bifurcations of a generalized Dullin-GottwaldHolm equation with a power law nonlinearity....
    • 36. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Internat. J. Bifur. Chaos 17(11), 4049–4065 (2007)
    • 37. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1990)
    • 38. Arai, A.: Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158(1), 63–79 (1991)
    • 39. Arai, A.: Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space time. J. Phys....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno