Ir al contenido

Documat


Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System

  • Leta, Temesgen Desta [1] ; Liu, Wenjun [1] ; El Achab, Abdelfattah [2] ; Rezazadeh, Hadi [3] ; Bekir, Ahmet [4]
    1. [1] Nanjing University of Information Science and Technology

      Nanjing University of Information Science and Technology

      China

    2. [2] University Cadi Ayyad Bd. du Prince Moulay Abdellah
    3. [3] Amol University of Special Modern Technologies
    4. [4] Neighbourhood of Akcaglan
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00449-x
  • Enlaces
  • Resumen
    • In this paper, we applied some computational tools, namely the modified extended tanh method via a Riccati equation, the general Expa-function method and the bifurcation methods to study a nonlinear (2+1)-dimensional Bogoyavlenskii coupled system in thin-film ferroelectric medium to construct exact traveling wave solutions. By applying a classical wave transformation we obtained an ordinary differential equations. As a result, some new traveling wave solutions are obtained including hyperbolic, trigonometric, exponential functions and rational forms. If the parameters take specific values, then the periodic wave, solitary waves, kink and anti-kink wave solutions are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special cases of these nonlinear equations by the help of programming language Maple.

  • Referencias bibliográficas
    • 1. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note...
    • 2. Biswas, A., et al.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Tech. 44, 263–268 (2012)
    • 3. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers (English Summary). Birkhäuser Boston Inc, Boston, MA...
    • 4. Topkara, E., Milovic, D., Sarma, A.K., Zerrad, E., Biswas, A.: Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion...
    • 5. Kwak, Y., Choi, U.J., Bae, S.H.: An algebraic geometric method to calculate branches near a bifurcation point. Comput. Math. Appl. 19,...
    • 6. Murawski, K.: On Lax’s formula and inverse scattering method for the fifth-order Korteweg-de Vries equation. Ann. Phys. 44, 625–626 (1987)
    • 7. Vakhnenko, V.O., Parkes, E.J.: The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into...
    • 8. Zhang, Y., Chang, X., Hu, J., Hu, X., Tam, H.: Integrable discretization of soliton equations via bilinear method and Bácklund transformation....
    • 9. Xing, L., Tao, G., Cheng, Z., Hong-Wi, Z., Xiang-Hua, M., BO, T.: Muliti-soliton solutions and their interactions for the (2+1)-dimensional...
    • 10. Belgacem, F.B.M., Karaballi, A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal....
    • 11. Kumar, H., Chand, F.: Optical solitary wave solutions for the higher order nonlinear Schrodinger equation with self-steepening and self-frequency...
    • 12. Chow, K.W.: A class of exact, periodic solutions of nonlinear envelope equations. J. Math. Phys. 36(8), 4125–4137 (1995)
    • 13. Peng, Y., Shen, M.: On exact solutions of the Bogoyavlenskii equation. Pramana J. Phys. 67, 449–456 (2006)
    • 14. Zahran, Emad, H.M., Mostafa, M.A.: Khater: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation”....
    • 15. Wazwaz, A.-M.: Multiple soliton solutions for the Bogoyavlenskii’s generalized breaking soliton equations and its extension form. Appl....
    • 16. Bogoyavlenskii, O.I.: Overturning solitons in two-dimensional integrable equations. (Russian) Usp. Mat. Nauk, Transl Russian Math. Sur....
    • 17. Kudryashov, N., Pickering, A.: Rational solutions for Schwarzian integrable hierarchies. J. Phys. A 31, 9505–9518 (1998)
    • 18. Clarkson, P.A., Gordoa, P.R., Pickering, A.: Multicomponent equations associated to non-isospectral scattering problems. Inverse Prob....
    • 19. Estevéz, P.G., Prada, J.: A generalization of the sine-Gordon equation (2+1)-dimensions. J Nonlinear Math. Phys. 11, 164–179 (2004)
    • 20. Somayeh, M.A., Maliheh, N.: Soliton Solutions for (2+1)-dimensional Breaking Soliton Equation: Three Wave Method. Int. J. Appl. Math....
    • 21. Xin, X.-P., Liu, X.-Q., Zhang, L.-L.: Explicit solutions of the Bogoyavlensky-Konoplechenko equation. Appl. Math. Comput. 215, 3669–3673...
    • 22. Prabhakar, M.V., Bhate, H.: Exact Solutions of the Bogoyavlensky-Konoplechenko Equation. Lett. Math. Phys. 64(1), 1–6 (2003)
    • 23. Bogoyavlenskii, O.I.: Overturning solitons in new two-dimensional integrable equations. Math Izv. 34(2), 245–259 (1990)
    • 24. Bogoyavlenskii, O.I.: Breaking solitons in (2+1)-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)
    • 25. Cordero, R., Mota, R.D.: Soliton stability in a generalized sine-Gordon potential. Int. J. Theor. Phys. 43, 2215–2222 (2004)
    • 26. Vitanov, N.K.: On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems. J. Phys. A 29, 5195–5207 (1996)
    • 27. Malik, A., Chand, F., Kumar, H., Mishra, S.C.: Exact solutions of the Bogoyavlenskii equation using the multiple ( G G )− expansion method....
    • 28. Peng, Y.-Z., Shen, M.: On exact solutions of the Bogoyavlenskii equation. PRAMANA 67(3), 449–456 (2006)
    • 29. Parkes, E.J., Duffy, B.R.: An Automated Tanh-Function Method for Finding Solitary Wave Solutions to NonLinear Evolution Equations. Comput....
    • 30. Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method and its applications to nonlinear equations....
    • 31. Engui, Fan: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)
    • 32. Kamruzzaman, K., Akbar, M.A.: Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations. Math. Phys. 685736, 8 (2013)
    • 33. Zayed, E.M.E., Alurrfi, K.A.E.: The modified extended tanh-function method and its applications to the generalized KdV-mKdV equation with...
    • 34. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142...
    • 35. Ali, A.T., Hassan, E.R.: General Expa−function method for nonlinear evolution equations. Appl. Math. Comput. 217, 451–459 (2010)
    • 36. Zayed, E.M.E., Al-Nowehy, A.-G.: Solitons and other exact solutions for variant nonlinear Boussinesq equations. Optik 139, 166–177 (2017)
    • 37. Stakhov, A., Rozin, B.: On a new class of hyperbolic functions. Chaos Solitons Fract. 23, 379–389 (2005)
    • 38. Li, J.B.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science Press, Beijing (2013)
    • 39. Leta, T.D., Li, J.: Dynamical behavior of traveling wave solutions of a long waves-short waves resonance model. Qual. Theory Dyn. Syst....
    • 40. Leta, T.D., Li, J.: Dynamical behavior and exact solution in invariant manifold for a septic derivative nonlinear Schrödinger equation....
    • 41. Byrd, P.F., Fridman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno