Elhadj Dahia, Khaled Hamidi
In this paper we introduce the concept of Lipschitz Pietsch-p-integral mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vectormeasure defined on a suitable compact Hausdorff space, obtaining in this way a rich factorization theory through the classical Banach spaces C(K), L_p(μ,K) and L_∞(μ,K). Also we show that this type of operators fits in the theory of composition Banach Lipschitz operator ideals. For p=∞, we characterize the Lipschitz Pietsch-∞-integral mappings by a factorization schema through a weakly compact operator. Finally, the relationship between these mappings and some well known Lipschitz operators is given.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados