Ir al contenido

Documat


Lipschitz integral operators represented by vector measures

  • Dahia, Elhadj [1] ; Hamidi, Khaled [2]
    1. [1] Ecole Normale Supérieure de Bousaada
    2. [2] University of Mohamed El-Bachir El-Ibrahimi ; University of M’sila
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 2, 2021, págs. 367-383
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.15061
  • Enlaces
  • Resumen
    • In this paper we introduce the concept of Lipschitz Pietsch-p-integral mappings, (1≤p≤∞), between a metric space and a Banach space. We represent these mappings by an integral with respect to a vectormeasure defined on a suitable compact Hausdorff space, obtaining in this way a rich factorization theory through the classical Banach spaces C(K), L_p(μ,K) and L_∞(μ,K). Also we show that this type of operators fits in the theory of composition Banach Lipschitz operator ideals. For p=∞, we characterize the Lipschitz Pietsch-∞-integral mappings by a factorization schema through a weakly compact operator. Finally, the relationship between these mappings and some well known Lipschitz operators is given.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno