Ir al contenido

Documat


Orbitally discrete coarse spaces

    1. [1] Taras Shevchenko National University of Kyiv

      Taras Shevchenko National University of Kyiv

      Ucrania

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 22, Nº. 2, 2021, págs. 303-309
  • Idioma: inglés
  • DOI: 10.4995/agt.2021.13874
  • Enlaces
  • Resumen
    • Given a coarse space (X, E), we endow X with the discrete topology and denote X ♯ = {p ∈ βG : each member P ∈ p is unbounded }. For p, q ∈ X ♯ , p||q means that there exists an entourage E ∈ E such that E[P] ∈ q for each P ∈ p. We say that (X, E) is orbitally discrete if, for every p ∈ X ♯ , the orbit p = {q ∈ X ♯ : p||q} is discrete in βG. We prove that every orbitally discrete space is almost finitary and scattered.

  • Referencias bibliográficas
    • T. Banakh and I. Protasov, Set-theoretical problems in Asymptology,arXiv: 2004.01979.
    • T. Banakh, I. Protasov and S. Slobodianiuk, Scattered subsets of groups, Ukr. Math. J. 67 (2015), 347-356. https://doi.org/10.1007/s11253-015-1084-2
    • T. Banakh and I. Zarichnyi, Characterizing the Cantor bi-cube in asymptotic categories, Groups Geom. Dyn. 5, no. 4 (2011), 691-728. https://doi.org/10.4171/GGD/145
    • Ie. Lutsenko and I. Protasov, Space, thin and other subsets of groups, Intern. J. Algebra Comput. 19 (2009), 491-510. https://doi.org/10.1142/S0218196709005135
    • Ie. Lutsenko and I. V. Protasov, Thin subset of balleans, Appl. Gen. Topology 11 (2010), 89-93. https://doi.org/10.4995/agt.2010.1710
    • O. Petrenko and I. V. Protasov, Balleans and filters, Mat. Stud. 38 (2012), 3-11. https://doi.org/10.1007/s11253-012-0653-x
    • I. V. Protasov, Normal ball structures, Mat. Stud. 20 (2003), 3-16.
    • I. V. Protasov, Balleans of bounded geometry and G-spaces, Algebra Dicrete Math. 7, no. 2 (2008), 101-108.
    • I. V. Protasov, Sparse and thin metric spaces, Mat. Stud. 41 (2014), 92-100.
    • I. Protasov, Decompositions of set-valued mappings, Algebra Discrete Math. 30, no. 2 (2020), 235-238. https://doi.org/10.12958/adm1485
    • I. Protasov, Coarse spaces, ultrafilters and dynamical systems, Topol. Proc. 57 (2021), 137-148.
    • I. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Mat. Stud. Monogr. Ser. Vol. 11, VNTL, Lviv, 2003.
    • I. Protasov and K. Protasova, Lattices of coarse structures, Math. Stud. 48 (2017), 115-123.
    • I. V. Protasov and S. Slobodianiuk, Thin subsets of groups, Ukrain. Math. J. 65 (2013), 1245-1253. https://doi.org/10.1007/s11253-014-0866-2
    • I. Protasov and S. Slobodianiuk, On the subset combinatorics of $G$-spaces, Algebra Dicrete Math. 17, no. 1 (2014), 98-109.
    • I. Protasov and S. Slobodianiuk, Ultracompanions of subsets of a group, Comment. Math. Univ. Carolin. 55, no. 1 (2014), 257-265.
    • I. Protasov and S. Slobodianiuk, The dynamical look at the subsets of groups, Appl. Gen. Topology 16 (2015), 217-224. https://doi.org/10.4995/agt.2015.3584
    • I. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
    • J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI, 2003. https://doi.org/10.1090/ulect/031

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno