Ir al contenido

Documat


The dynamical look at the subsets of a group

  • Protasov, Igor V. [1] ; Slobodianiuk, Sergii
    1. [1] Kyiv University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 16, Nº. 2, 2015, págs. 217-224
  • Idioma: inglés
  • DOI: 10.4995/agt.2015.3584
  • Enlaces
  • Resumen
    • We consider the action of a group $G$ on the family $\mathcal{P}(G)$ of all subsets of $G$ by the right shifts $A\mapsto Ag$ and give the dynamical characterizations of thin, $n$-thin, sparse and scattered subsets.For $n\in\mathbb{N}$, a subset $A$ of a group $G$ is called $n$-thin if $g_0A\cap\dots\cap g_nA$ is finite for all distinct $g_0,\dots,g_n\in G$.Each $n$-thin subset of a group of cardinality $\aleph_0$ can be partitioned into $n$ $1$-thin subsets but there is a $2$-thin subset in some Abelian group of cardinality $\aleph_2$ which cannot be partitioned into two $1$-thin subsets. We eliminate the gap between $\aleph_0$ and $\aleph_2$ proving that each $n$-thin subset of an Abelian group of cardinality $\aleph_1$ can be partitioned into $n$ $1$-thin subsets.

  • Referencias bibliográficas
    • T. Banakh, I. V. Protasov and S. Slobodianiuk, Scattered subsets of groups, Ukr. Math J. 67 (2015), 304-312, preprint (http://arxiv.org/abs/1312.6946).
    • T. Carlson, N. Hindman, J. McLeod and D. Strauss, Almost disjoint large subsets of a semigroups, Topology Appl. 155 (2008), 433-444.
    • http://dx.doi.org/10.1016/j.topol.2005.05.012
    • C. Chou, On the size of the set of left invariant means on a group, Proc. Amer. Math. Soc. 23 (1969), 199-205.
    • http://dx.doi.org/10.1090/s0002-9939-1969-0247444-1
    • M. Filali, Ie. Lutsenko and I. V. Protasov, Boolean group ideals and the ideal structure of $beta G$, Math. Stud. 31 (2009), 19-28.
    • H. Furstenberg, Poincare recurrence and number theory, Bull. Amer. Math. Soc. 5, no. 3 (1981), 211-234.
    • http://dx.doi.org/10.1090/S0273-0979-1981-14932-6
    • P. Hall, On representations of subsets, J. London Math. Soc. 10 (1935), 26-30.
    • N. Hindman, Ultrafilters and combinatorial number theory, Lecture Notes in Math. 571 (1979), 119-184.
    • http://dx.doi.org/10.1007/BFb0062706
    • N. Hindman and D. Strauss, Algebra in the Stone-Cech compactification, de Gruyter, Berlin, New York, 1998.
    • http://dx.doi.org/10.1515/9783110809220
    • Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation 19 (2009), 491-510.
    • http://dx.doi.org/10.1142/S0218196709005135
    • Ie. Lutsenko and I. V. Protasov, Thin subsets of balleans, Appl. Gen. Topology 11 (2010), 89-93.
    • http://dx.doi.org/10.4995/agt.2010.1710
    • V. I. Malykhin and I. V. Protasov, Maximal resolvability of bounded groups, Topology Appl. 20 (1996), 1-6.
    • http://dx.doi.org/10.1016/s0166-8641(96)00020-x
    • I. V. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull. 7 (2010), 220-257.
    • I. V. Protasov, Partitions of groups into thin subsets, Algebra Discrete Math. 11 (2011), 88-92.
    • I. V. Protasov, Partitions of groups into sparse subsets, Algebra Discrete Math. 13 (2012), 107-110.
    • I. V. Protasov and S. Slobodianiuk, Thin subsets of groups, Ukr. Math. J. 65 (2013), 1245-1253.
    • I. V. Protasov and S. Slobodianiuk, On the subset combinatorics of $G$-spaces, Algebra Discrete Math. 17 (2014), 98-109.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno