Ir al contenido

Documat


Metric Versus Topological Receptive Entropy of Semigroup Actions

  • Bi´s, Andrzej [1] ; Dikranjan, Dikran [2] ; Giordano Bruno, Anna [2] ; Stoyanov, Luchezar [3]
    1. [1] University of Łódź

      University of Łódź

      Łódź, Polonia

    2. [2] Università di Udine

      Università di Udine

      Udine, Italia

    3. [3] University of Western Australia

      University of Western Australia

      Australia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00485-7
  • Enlaces
  • Resumen
    • We study the receptive metric entropy for semigroup actions on probability spaces, inspired by a similar notion of topological entropy introduced by Hofmann and Stoyanov (Adv Math 115:54–98, 1995). We analyze its basic properties and its relation with the classical metric entropy. In the case of semigroup actions on compact metric spaces we compare the receptive metric entropy with the receptive topological entropy looking for a Variational Principle. With this aim we propose several characterizations of the receptive topological entropy. Finally we introduce a receptive local metric entropy inspired by a notion by Bowen generalized in the classical setting of amenable group actions by Zheng and Chen, and we prove partial versions of the Brin–Katok Formula and the local Variational Principle.

  • Referencias bibliográficas
    • 1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)
    • 2. Bi´s, A.: Entropies of a semigroup of maps. Discrete Cont. Dyn. Syst. 11, 639–648 (2004)
    • 3. Bi´s, A.: An analogue of the variational principle for group and semigroup actions. Ann. de L’Inst. Fourier 63, 839–863 (2013)
    • 4. Bi´s, A., Dikranjan, D., Giordano Bruno, A., Stoyanov, L.: Algebraic entropies of commuting endomorphisms of torsion abelian groups. Rend....
    • 5. Bi´s, A., Dikranjan, D., Giordano Bruno, A., Stoyanov, L.: Topological entropy, upper capacity and fractal dimensions of finitely generated...
    • 6. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)
    • 7. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 154, 125–136 (1973)
    • 8. Brin, M., Katok, A.: On local entropy. In: Geometric Dynamics. Lecture Notes in Mathematics, vol. 1007, pp. 30–38. Springer, Berlin (1983)
    • 9. Cánovas, J.S.: Topological sequence entropy of interval maps. Nonlinearity 17, 49–56 (2004)
    • 10. Conze, J.P.: Entropie d’un groupe abélien de transformations. Z. Wahrscheinlichkeitstheorie 25, 11–30 (1972)
    • 11. Dekking, F.M.: Some examples of sequence entropy as an isomorphism invariant. Trans. Am. Mat. Soc. 259, 167–183 (1980)
    • 12. Dikranjan, D., Fornasiero, A., Giordano Bruno, A.: Algebraic entropy for amenable semigroup actions. J. Algebra 556, 467–546 (2020)
    • 13. Dikranjan, D., Giordano Bruno, A.: The connection between topological and algebraic entropy. Topol. Appl. 159, 2980–2989 (2012)
    • 14. Dikranjan, D., Giordano Bruno, A.: Entropy on abelian groups. Adv. Math. 298, 612–653 (2016)
    • 15. Dikranjan, D., Giordano Bruno, A.: Entropy on normed semigroups (towards a unifying approach to entropy). Diss. Math. 542, 1–90 (2019)
    • 16. Dikranjan, D., Goldsmith, B., Salce, L., Zanardo, P.: Algebraic entropy of endomorphisms of abelian groups. Trans. Am. Math. Soc. 361,...
    • 17. Dinaburg, E.I.: The relation between topological entropy and metric entropy. Soviet. Math. Dokl. 11, 13–16 (1970)
    • 18. Eberlein, E.: On topological entropy of semigroups of commuting transformations. Astérisque 40, 1–46 (1977)
    • 19. Einsiedler, M., Ward, T.: Ergodic Theory with a View Towards Number Theory, Graduate Texts in Mathematics 259. Springer, London (2011)
    • 20. Elsanousi, S.A.: A variational principle for the pressure of a continuous Z2 action. Am. J. Math. 99, 77–100 (1977)
    • 21. Feng, D., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)
    • 22. Franzová, N., Smital, J.: Positive sequence topological entropy characterizes chaotic maps. Proc. Am. Math. Soc. 112, 1083–1086 (1991)
    • 23. Giordano Bruno, A.: A bridge theorem for the entropy of semigroup actions. Topol. Algebra Appl. 8(1), 46–57 (2020)
    • 24. Goodman, T.N.T.: Relating topological and measure entropy. Bull. Lond. Math. Soc. 3, 176–180 (1971)
    • 25. Goodman, T.N.T.: Topological sequence entropy. Proc. Lond. Math. Soc. 29, 331–350 (1974)
    • 26. Ghys, E., Langevin, R., Walczak, P.: Entropie geometrique des feuilletages. Acta Math. 160, 105–142 (1988)
    • 27. Goodwyn, L.W.: Topological entropy bounds measure-theoretic entropy. Proc. Am. Math. Soc. 23, 679–688 (1969)
    • 28. Hochman, M.: Slow entropy and differentiable models for infinite-measure preserving Zk -actions. Ergod. Theory Dyn. Syst 32, 653–674 (2012)
    • 29. Hofmann, K.-H., Stoyanov, L.N.: Topological entropy of group and semigroup actions. Adv. Math. 115, 54–98 (1995)
    • 30. Katok, A., Thouvenot, J.P.: Slow entropy type invariants and smooth realization of commuting measurepreserving transformations. Ann. Inst....
    • 31. Kong, D., Chen, E.: Slow entropy for noncompact sets and variational principle. J. Dyn. Differ. Equ. 26(3), 477–492 (2014)
    • 32. Kushnirenko, A.: On metric invariants of entropy type. Uspehi Mat. Nauk 22, 57–66 (1967)
    • 33. Lema ´nczyk, M.: The sequence entropy for Morse shifts and some counterexamples. Studia Math. 82, 221–241 (1985)
    • 34. Lind, D., Schmidt, K.,Ward, T.:Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math. 101, 593–629 (1990)
    • 35. Ma, J., Wen, Z.: A Billingsley type theorem for Bowen entropy. C. R. Acad. Sci. Paris 346, 503–507 (2008)
    • 36. Misiurewicz, M.: A short proof of the variational principle for a Zn + action. Astérisque 40, 147–158 (1977)
    • 37. Misiurewicz, M.: On Bowen’s definition of topological entropy. Discrete Contin. Dyn. Syst. 10, 827– 833 (2004)
    • 38. Ollagnier, J.M.: Ergodic Theory and Statistical Mechanics. Lecture Notes in Mathematics, vol. 1115. Springer, Berlin (1985)
    • 39. Ollagnier, J.M., Pinchon, D.: The variational principle. Studia Math. 72, 151–159 (1982)
    • 40. Pesin, Y.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. The University of Chicago Press, Chicago (1997)
    • 41. Peters, J.: Entropy on discrete abelian groups. Adv. Math. 33, 1–13 (1979)
    • 42. Ruelle, D.: Statistical mechanics on a compact set with Zn action. Trans. Am. Math. Soc. 185, 237–252 (1973)
    • 43. Ruelle, D.: Thermodynamic Formalism. Addison-Wesley, London (1978)
    • 44. Schmidt, K.: Dynamical Systems of Algebraic Origin, Progress in Mathematics 128. Birkhäuser Zentralblatt Verlag, Basel (1995)
    • 45. Stojanov, L.: Uniqueness of topological entropy for endomorphisms on compact groups. Boll. Un. Mat. Ital. B (7) 1(3), 82–847 (1987)
    • 46. Stepin, A.M., Tagi-Zade, A.T.: Variational characterization of topological pressure for amenable groups of transformations. Dokl. Akad....
    • 47. Todorovich, L.: Entropy of ZN actions. Honours Thesis supervised by L. Stoyanov, University of Western Australia (2009)
    • 48. Walczak, P.: Dynamics of Foliations. Groups and Pseudogroups. Birkhäuser, Basel (2004)
    • 49. Walters, P.: Ergodic Theory. Springer, Berlin (1980)
    • 50. Weiss, M.D.: Algebraic and other entropies of group endomorphisms. Math. Syst. Theory 8(3), 243– 248 (1974/75)
    • 51. Zheng, D., Chen, E.: Bowen entropy for actions of amenable groups. Isr. J. Math. 212, 895–911 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno