Localización:Moving technology ethics at the forefront of society, organisations and governments / coord. por Jorge Pelegrín Borondo, Mario Arias Oliva , Kiyoshi Murata, Ana María Lara Palma , 2021, ISBN 978-84-09-28672-0, págs. 205-217
AI Explanability 360. (2021). AI Explanability 360. https://aix360.mybluemix.net/
Bastani, O., Kim, C., & Bastani, H. (2017). 137. Interpreting blackbox models via model extraction. ArXiv.
BBC Mundo. (2016). Tay, la robot racista y xenófoba de Microsoft. Bbc. https://www.bbc.com/mundo/noticias/2016/03/160325_tecnologia_microsoft_tay_bot_adolesc...
BBC Mundo Tecnología. (2015). Google pide perdón por confundir a una pareja negra con gorilas. Bbc. https://www.bbc.com/mundo/noticias/2015/07/150702_tecnologia_google_perdon_confundir_a...
Bert, G. (2018). Google BERT. https://cloud.google.com/tpu/docs/tutorials/bert
Blackmer, W. S. (2018). 84. EU general data protection regulation. American Fuel and Petrochemical Manufacturers, AFPM Labor Relations/Human...
Britannica, E. (2018). MYCIN. https://www.britannica.com/technology/MYCIN
Bundy, A. (2017). 20. Preparing for the future of Artificial Intelligence. Ai & Society, 32(2), 285–287. https://doi.org/10.1007/s00146-016-0685-0
Business, C. (2019). Apple co-founder Steve Wozniak says Apple Card discriminated against his wife. https://edition.cnn.com/2019/11/10/business/goldman-sachs-apple-carddiscrimination/index.html
Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). CAT. A Machine learning interpretability: A survey on methods and metrics. Electronics...
Casella, G., Fienberg, S., & Olkin, I. (2013). An Introduction to Statistical Learning. In Springer Texts in Statistics. http://books.google.com/books?id=9tv0taI8l6YC
Clancey, W. J. (1987). The GUIDON Program. MIT Press Series in Artificial Intelligence.
Comisión Europea. (2020). Libro Blanco sobre la Inteligencia Artificial un enfoque europeo orientado a la excelencia y la confianza. Comisión...
Commission, E. (2018). Artificial Intelligence for Europe Communication. https://ec.europa.eu/transparency/regdoc/rep/1/2018/EN/COM-2018-237-F1-EN-MAIN-PART-1.PDF
Dastin, J. (2005). Amazon scraps secret AI recruiting tool that showed bias against women. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
Day, M. (2016). How LinkedIn’s search engine may reflect a gender bias. The Seattle Times. https://www.seattletimes.com/business/microsoft/how-linkedins-search-engine-may-reflect-abias/
Digitales, S., Unidos, E., Europa, H., & Digital, P. E. (2020). Los Estados miembros y la Comisión colaborarán para impulsar la inteligencia...
Doshi-Velez, F., & Kim, B. (2017). 41. Towards A Rigorous Science of Interpretable Machine Learning. Ml, 1–13. http://arxiv.org/abs/1702.08608
Doshi-Velez, F., & Kim, B. (2018). 152. Considerations for Evaluation and Generalization in Interpretable Machine Learning. 3–17. https://doi.org/10.1007/978-3-319-98131-4_1
European Commission. (2019). COM(2019) 168 final Building Trust in Human Centric Artificial Intelligence. 11. https://ec.europa.eu/digital-single-market/en/news/communication-buildingtrust-human-centric-artificial-intelligence
Fast Company. (2019). I applied for an Apple Card. What they offered was a sexist insult. https://www.fastcompany.com/90429224/i-applied-for-an-apple-card-what-they-offered-was-asexist-insult
Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., & Sculley, D. (2017). 8. Google vizier: A service for black-box optimization....
Goodman, B., & Flaxman, S. (2017). 88. European union regulations on algorithmic decision making and a “right to explanation.” AI Magazine,...
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G. Z. (2019). 18. XAI-Explainable artificial intelligence. Science...
Hand, D., & Paulos, J. A. (1992). Innumeracy: Mathematical Illiteracy and its Consequences. In Applied Statistics (Vol. 41, Issue 1)....
Honegger, M. R. (2018). 79. Shedding Light on Black Box Machine Learning Algorithms. August.
Hughes, R., Edmond, C., Wells, L., Glencross, M., Zhu, L., & Bednarz, T. (2020). eXplainable AI (XAI). 1– 62. https://doi.org/10.1145/3415263.3419166
Kahneman, D. (1981). The Simulation Heuristic.
Kahneman, D. (2012). Thinking, Fast and Slow. New York: Farrar, Straus and Giroux, 2011. In Etc (Issue October).
Kahng, M., Andrews, P. Y., Kalro, A., & Chau, D. H. P. (2018). 39. ActiVis: Visual Exploration of IndustryScale Deep Neural Network Models....
Larson, J., Mattu, S., Kirchner, L., & Angwin, J. (2016). How We Analyzed the COMPAS Recidivism Algorithm. ProPublica. https://www.propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm
Lipton, P. (1990). Contrastive explanation. Contrastivism in Philosophy, 11–34. https://doi.org/10.4324/9780203117477
Lipton, Z. C. (2018). The mythos of model interpretability. Communications of the ACM, 61(10), 35–43. https://doi.org/10.1145/3233231
Liu, H., Cocea, M., & Gegov, A. (2016). Interpretability of computational models for sentiment analysis. Studies in Computational Intelligence,...
Microsoft. (2021). Instalar el SDK de Azure Machine Learning para Python. https://docs.microsoft.com/es-es/python/api/overview/azure/ml/install?preserveview=true&view=azure-ml-py
Miller, T. (2019). 95. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267, 1–38. https://doi.org/10.1016/j.artint.2018.07.007
Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Book, 247. https://christophm.github.io/interpretable-ml-book
Munchen, T. U. (2021). European approach to Artificial Intelligence. E-Conversion Proposal for a Cluster of Excellence, 29–50. https://ec.europa.eu/digital-single-market/en/news/communicationbuilding-trust-human-centric-artificial-intelligence
Nickerson, R. S. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Zeitschrift Für Neurologie, 199(1–2), 145–150. https://doi.org/10.1007/BF00316552
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Model-Agnostic Interpretability of Machine Learning. Whi. http://arxiv.org/abs/1606.05386
Ross, C. (2018). Watson for Oncology. STAT, 1–30. papers3://publication/uuid/5566F158-417A-46D3- B583-04EE273812A1
Roy, M. (2017). 80. Cathy O’Neil. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown...
Royal Society of Great Britain. (2017). 24. Machine learningâ¯: the power and promise of computers that learn by example. In Report by the...
Rudin, C. (2019). 9. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature...
Samad, M. D., Ulloa, A., Wehner, G. J., Jing, L., Hartzel, D., Good, C. W., Williams, B. A., Haggerty, C. M., & Fornwalt, B. K. (2019)....
Standardization, I. O. (2021). ISO. International Organization for Standardization. https://www.iso.org/committee/6794475.html
Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. ArXiv.
Tan, S., Caruana, R., Hooker, G., & Lou, Y. (2018). 77. Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation....