Ir al contenido

Documat


Experiences in the use of an adaptive intelligent system to enhance online learners' performance: a case study in Economics and Business courses

  • Autores: Ana Elena Guerrero Roldán, M. Elena Rodríguez Árbol académico, David Bañeres Árbol académico, Amal Elasri-Ejjaberi, Pau Cortadas Guasch
  • Localización: International Journal of Educational Technology in Higher Education, ISSN 2365-9440, Nº. 18, 2021
  • Idioma: inglés
  • DOI: 10.1186/s41239-021-00271-0
  • Enlaces
  • Resumen
    • Several tools and resources have been developed in the past years to enhance the teaching and learning process. Most of them are focused on the process itself, but few focus on the assessment process to detect at-risk learners for later acting through feedback to support them to succeed and pass the course. This research paper pre‑ sents a case study using an adaptive system called Learning Intelligent System (LIS).

      The system includes an Early Warning System and tested in a fully online university to increase learners’ performance, reduce dropout, and ensure proper feedback to guide learners. LIS also aims to help teachers to detect critical cases to act on time with learners. The system has been tested in two frst-year courses in the fully online BSc of Economics and Business at the Universitat Oberta de Catalunya. A total of 552 learners were participating in the case study. On the one hand, results show that performance is better than in previous semesters when using it. On the other hand, results show that learners’ perception of efectiveness is higher, and learners are willing to continue using the system in the following semesters because it becomes benefcial for them.

  • Referencias bibliográficas
    • Abelló, A., Burgués, X., Casany, M. J., Martín, C., Quer, C., Rodríguez, M. E., Romero, O., & Urpí, T. (2016). A software tool for E-assessment...
    • Angus, S. D., & Watson, J. (2009). Does regular online testing enhance student learning in the numerical sciences? Robust evidence from...
    • Arnold, K. E., and Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success. ACM International...
    • Bakar, A., Shah, K., & Qingyu, X. (2020). The efect of communication barriers on. Revista Argentina de Clínica Psicológica, 29(5), 248–264....
    • Baneres, D., Clariso, R., Jorba, J., & Serra, M. (2014). Experiences in digital circuit design courses: a self-study platform for learning...
    • Baneres, D., Karadeniz, A., Guerrero-Roldán, A. E., & Elena Rodríguez, M. (2021). A predictive system for supporting at-risk students’...
    • Baneres, D., Rodríguez, M. E., Guerrero-Roldán, A. E., & Karadeniz, A. (2020). An early warning system to detect at-risk students in online...
    • Bates, R., & Khasawneh, S. (2007). Self-efcacy and college students’ perceptions and use of online learning systems. Computers in Human...
    • Bedenlier, S., Bond, M., Buntins, K., Zawacki-Richter, O., & Kerres, M. (2020). Facilitating student engagement through educational technology...
    • Casey, K., & Azcona, D. (2017). Utilizing student activity patterns to predict performance. International Journal of Educational Technology...
    • Castro, R. (2019). Blended learning in higher education: trends and capabilities. Education and Information Technologies, 24(4), 2523–2546....
    • Castro Sánchez, J. J., & Chirino Alemán, E. (2011). Teachers’ opinion survey on the use of ICT tools to support attendancebased teaching....
    • Cem, F. (2008). A multi-agent adaptive learning system for distance education (Middle East Technical University). https://www.semanticscholar.org/paper/A-MULTI-AGENT-ADAPTIVE-LEARNING-SYSTEM-FOR-DISTANCE-Cem/bef6e4c4541d2aca91d0de0f1c9cf09def02eedc.
    • Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students’ LMS interaction patterns and their relationship...
    • Espasa, A., Guasch, T., Mayordomo, R. M., Martínez-Melo, M., & Carless, D. (2018). A Dialogic Feedback Index measuring key aspects of...
    • Espasa, A., & Meneses, J. (2010). Analysing feedback processes in an online teaching and learning environment: an exploratory study. Higher...
    • Esterhazy, R., & Damşa, C. (2019). Unpacking the feedback process: an analysis of undergraduate students’ interactional meaning-making...
    • Fernandez Aleman, J. L. (2011). Automated assessment in a programming tools course. IEEE Trans. on Educ., 54(4), 576–581. https://doi.org/10.1109/TE.2010.2098442
    • Freitas, R., & Salgado, L. (2020). Educators in the loop: Using scenario simulation as a tool to understand and investigate predictive...
    • Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics. https://doi.org/10.1214/aos/1176347963
    • Ghavifekr, S., Kunjappan, T., Ramasamy, L., & Anthony, A. (2016). Teaching and learning with ICT tools: issues and challenges from teachers’...
    • Gibbs, G., and Simpson, C. (2005). Conditions Under Which Assessment Supports Students’ Learning. Learning and Teaching in Higher Education,...
    • Giménez, O., Petit, J., and Roura, S. (2012). Jutge.org: An educational programming judge. SIGCSE’12 - Proceedings of the 43rd ACM Technical...
    • Goodyear, P. (2020). Design and co-confguration for hybrid learning: theorising the practices of learning space design. British Journal of...
    • Grau-Valldosera, J., & Minguillón, J. (2014). Rethinking dropout in online higher education: the case of the Universitat Oberta de Catalunya....
    • Guasch, T., Espasa, A., and Alvarez, I. (2010). Formative e-feedback in collaborative writing assignments: the efect of the process and time....
    • Guerrero-Roldán, A. E., & Noguera, I. (2018). A model for aligning assessment with competences and learning activities in online courses....
    • Gurvitch, R., & Metzler, M. (2013). Aligning learning activities with instructional models. Journal of Physical Education, Recreation...
    • Hu, Y. H., Lo, C. L., & Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. Computers...
    • Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: a comparison of four types of...
    • Kemper, L., Vorhof, G., & Wigger, B. U. (2020). Predicting student dropout: a machine learning approach. European Journal of Higher Education,...
    • Knowles, J. (2014). Of needles and haystacks: building an accurate statewide dropout early warning system in wisconsin. JEDM - Journal of...
    • Kruskal, W. H. (1957). Historical notes on the wilcoxon unpaired two-sample test. Journal of the American Statistical Association, 52(279),...
    • Lee, S., & Chung, J. Y. (2019). The machine learning-based dropout early warning system for improving the performance of dropout prediction....
    • López-Zambrano, J., Lara, J. A., & Romero, C. (2020). Towards portability of models for predicting students’ fnal performance in university...
    • Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through...
    • Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: a proof of concept. Computers...
    • Márquez-Vera, C., Cano, A., Romero, C., Noaman, A. Y. M., Mousa Fardoun, H., & Ventura, S. (2016). Early dropout prediction using data...
    • Martínez-Argüelles, M. J., Plana, D., Hintzmann, C., Batalla-Busquets, J. M., & Badia, M. (2015). Usefulness of feedback in e-learning...
    • Masika, R., & Jones, J. (2016). Building student belonging and engagement: insights into higher education students’ experiences of participating...
    • Melton, R. F. (2002). Planning and developing open and distance learning: a quality assurance approach. Planning and developing open and distance...
    • Milborrow, S., Hastie, T., and Tibshirani, R. (2014). Earth: multivariate adaptive regression spline models. R Package Version, 3(7).
    • Mousavinasab, E., Zarifsanaiey, N. R., Kalhori, N. S., Rakhshan, M., Keikha, L., & Saeedi, G. M. (2021). Intelligent tutoring systems:...
    • Mubarak, A. A., Cao, H., & Zhang, W. (2020). Prediction of students’ early dropout based on their interaction logs in online learning...
    • Najdi, L., & Er-Raha, B. (2016). A novel predictive modeling system to analyze students at risk of academic failure. International Journal...
    • Oates, B. J. (2005). Researching Information Systems And Computing. New York: SAGE.
    • Ortigosa, A., Carro, R. M., Bravo-Agapito, J., Lizcano, D., Alcolea, J. J., & Blanco, Ó. (2019). From lab to production: lessons learnt...
    • Parsons, D., Inkila, M., & Lynch, J. (2019). Navigating learning worlds: using digital tools to learn in physical and virtual spaces....
    • Phobun, P., & Vicheanpanya, J. (2010). Adaptive intelligent tutoring systems for e-learning systems. Procedia Social and Behavioral Sciences,...
    • Psotka, J., Massey, D. L., & Mutter, S. A. (1988). Intelligent tutoring systems: lessons learned. Mahwah: Lawrence Erlbaum Associates.
    • Ramírez-Noriega, A., Juárez-Ramírez, R., & Martínez-Ramírez, Y. (2017). Evaluation module based on Bayesian networks to Intelligent Tutoring...
    • Rodríguez, M. E., Guerrero-Roldán, A. E., Baneres, D., and Karadeniz, A. (2019). Towards an intervention mechanism for supporting learners...
    • Ross, E., and McNealy, K. (2020). Creating Connection Between Virtual Learners. https://econometricainc.com/wp-content/uploads/2020/10/Polling_Blue-Paper_Oct2020.pdf.
    • Shane, J., & Heckhausen, J. (2016). For better or worse: young adults opportunity beliefs and motivational self-regulation during career...
    • Siemens, G., and Baker, R. S. J. D. (2012). Learning analytics and educational data mining: Towards communication and collaboration. ACM International...
    • Soler, J., Boada, I., Prados, F., Poch, J., & Fabregat, R. (2010). A web-based e-learning tool for UML class diagrams. 2010 IEEE Education...
    • Srilekshmi, M., Sindhumol, S., Chatterjee, S., and Bijlani, K. (2017). Learning Analytics to Identify Students At-risk in MOOCs. Proceedings...
    • Sun, J. C. Y., & Rueda, R. (2012). Situational interest, computer self-efcacy and self-regulation: their impact on student engagement...
    • Tekian, A., Watling, C. J., Roberts, T. E., Steinert, Y., & Norcini, J. (2017). Qualitative and quantitative feedback in the context of...
    • Terzis, V., Moridis, C. N., & Economides, A. A. (2012). The efect of emotional feedback on behavioral intention to use computer based...
    • Vaishnavi, V., and Kuechler, W. (2013). Design Research in Information Systems. http://www.desrist.org/design-research-in-information-systems/
    • Vandamme, J.-P., Meskens, N., & Superby, J.-F. (2007). Predicting academic performance by data mining methods. Education Economics, 15(4),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno