Ir al contenido

Documat


The monodromy conjecture for a space monomial curve with a plane semigroup

  • Martin-Morales, Jorge [2] ; Veys, Willem [1] Árbol académico ; Vos, Lena [1]
    1. [1] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

    2. [2] Centro Universitario de la Defensa
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 65, Nº 2, 2021, págs. 529-597
  • Idioma: inglés
  • DOI: 10.5565/publmat6522105
  • Enlaces
  • Resumen
    • This article investigates the monodromy conjecture for a space monomial curve that appears as the special fiber of an equisingular family of curves with a plane branch as generic fiber. Roughly speaking, the monodromy conjecture states that every pole of the motivic, or related, Igusa zeta function induces an eigenvalue of monodromy. As the poles of the motivic zeta function associated with such a space monomial curve have been determined in earlier work, it remains to study the eigenvalues of monodromy. After reducing the problem to the curve seen as a Cartier divisor on a generic embedding surface, we construct an embedded Q-resolution of this pair and use an A’Campo formula in terms of this resolution to compute the zeta function of monodromy. Combining all results, we prove the monodromy conjecture for this class of monomial curves.

  • Referencias bibliográficas
    • N. A’Campo, La fonction zˆeta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–248.
    • S. S. Abhyankar and T.-T. Moh, Newton–Puiseux expansion and generalized Tschirnhausen transformation. I, J. Reine Angew. Math. 260 (1973),...
    • F. Aroca, M. Gomez-Morales, and K. Shabbir , Torical modification of Newton non-degenerate ideals, Rev. R. Acad. Cienc. Exactas Fıs. Nat....
    • E. Artal Bartolo, J. Martın-Morales, and J. Ortigas-Galindo, Cartier and Weil divisors on varieties with quotient singularities, Internat....
    • E. Artal Bartolo, J. Martın-Morales, and J. Ortigas-Galindo, Intersection theory on abelian-quotient V -surfaces and Q-resolutions, J. Singul....
    • A. C. P. Azevedo, The Jacobian ideal of a plane algebroid curve, Thesis (Ph.D.)-Purdue University (1967)
    • B. Bories and W. Veys, Igusa’s p-adic local zeta function and the monodromy conjecture for non-degenerate surface singularities, Mem. Amer....
    • P. Deligne, Le formalisme des cicles evanescents, in: “Groupes de Monodromie en Geometrie Algebrique”, Lecture Notes in Mathematics 340, Springer,...
    • J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109(6) (1987), 991–1008. DOI: 10.2307/2374583.
    • J. Denef, Degree of local zeta functions and monodromy, Compositio Math. 89(2) (1993), 207–216.
    • J. Denef and F. Loeser, Caract´eristiques d’Euler–Poincare, fonctions zeta locales et modifications analytiques, J. Amer. Math. Soc. 5(4)...
    • J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7(3) (1998), 505–537.
    • A. Dimca, “Sheaves in Topology”, Universitext, Springer-Verlag, Berlin, 2004. DOI: 10.1007/978-3-642-18868-8.
    • I. Dolgachev, Weighted projective varieties, in: “Group Actions and Vector Fields” (Vancouver, B.C., 1981), Lecture Notes in Math. 956, Springer,...
    • D. Eisenbud and J. Harris, “The Geometry of Schemes”, Graduate Texts in Mathematics 197, Springer-Verlag, New York, 2000. DOI: 10.1007/b97680.
    • R. Hartshorne, “Algebraic Geometry”, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977. DOI: 10.1007/978-1-4757-3849-0.
    • H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, Ann. of Math. (2) 79(1) (1964), 109–203....
    • J. Howald, M. Mustat¸a, and C. Yuen , On Igusa zeta functions of monomial ideals, Proc. Amer. Math. Soc. 135(11) (2007), 3425–3433. DOI: 10.1090/...
    • J.-P. Jouanolou, “Theoremes de Bertini et applications”, Progress in Mathematics 42, Birkhauser Boston, Inc., Boston, MA, 1983.
    • F. Loeser, Fonctions d’Igusa p-adiques et polynˆomes de Bernstein, Amer. J. Math. 110(1) (1988), 1–21. DOI: 10.2307/2374537.
    • J. Martın-Morales, Monodromy zeta function formula for embedded Q-resolutions, Rev. Mat. Iberoam. 29(3) (2013), 939–967. DOI: 10.4171/RMI/745.
    • J. Martın-Morales, Semistable reduction of a normal crossing Q-divisor, Ann. Mat. Pura Appl. (4) 195(5) (2016), 1749–1769. DOI: 10.1007/s10231-015-0546...
    • J. Martın-Morales, H. Mourtada, W. Veys, and L. Vos, Note on the monodromy conjecture for a space monomial curve with a plane semigroup, C....
    • J. Martın-Morales and L. Vos, Normal surface singularities with an integral homology sphere link related to space monomial curves with a plane...
    • J. Milnor, “Singular Points of Complex Hypersurfaces”, Annals of Mathematics Studies 61, Princeton University Press, Princeton, N.J.; University...
    • H. Mourtada, W. Veys, and L. Vos, The motivic Igusa zeta function of a space monomial curve with a plane semigroup, Preprint (2020). arXiv:1903.02354....
    • M. Mustat¸a, Bernstein–Sato polynomials for general ideals vs. principal ideals, Preprint (2019). arXiv:1906.03086.
    • I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. DOI: 10.1073/pnas.42.6.359.
    • M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112(1) (1990), 107–156. DOI: 10.2307/2374856.
    • [J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in: “Real and Complex Singularities” (Proc. Ninth Nordic Summer School/NAVF...
    • B. Teissier, Overweight deformations of affine toric varieties and local uniformization, in: “Valuation Theory in Interaction”, EMS Ser. Congr....
    • J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129(4) (2007), 1087–1104. DOI: 10.1353/ajm.2007.0029. [33] J. Tevelev,...
    • L. Van Proeyen and W. Veys, The monodromy conjecture for zeta functions associated to ideals in dimension two, Ann. Inst. Fourier (Grenoble)...
    • W. Veys and W. A. Zuniga-Galindo ˜ , Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra, Trans. Amer....
    • O. Zariski, “The Moduli Problem for Plane Branches”, With an appendix by Bernard Teissier, Translated from the 1973 French original by Ben...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno