Ir al contenido

Documat


Dynamics of Traveling Waves for the Perturbed Generalized KdV Equation

  • Ge, Jianjiang [1] ; Wu, Ranchao [1] ; Du, Zengji [2]
    1. [1] Anhui University

      Anhui University

      China

    2. [2] Jiangsu Normal University

      Jiangsu Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00483-9
  • Enlaces
  • Resumen
    • This paper is devoted to the existence of traveling, solitary and periodic waves for the perturbed generalized KdV by applying geometric singular perturbation, differential manifold theory and the regular perturbation analysis of Hamiltonian systems. Under the assumptions that the distributed delay kernel is the strong general one and the average delay is sufficiently small, traveling, solitary and periodic waves are shown to exist in the perturbed system. It is further proved that the wave speed is decreasing by analyzing the ratio of Abelian integrals, and we analyze these functions by using the theory of analytic functions and algebraic geometry. Moreover, the upper and lower bounds of the limit wave speed are presented. The relationship between wavelength and wave speed of traveling waves is also established.

  • Referencias bibliográficas
    • Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
    • Korteweg, D.J., Vries, G.d: On the change of form of the long waves advancing in a rectangular canal, and on a new type of stationary waves....
    • Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive system. Math. Phys. Sci. 272, 47–78 (1972)
    • Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid. Mech. 78, 237–246 (1976)
    • Camassa, R., Holm, D.: An integrable shallow water equation with peaked soliton. Phys. Rev. Lett. 71, 1661–1664 (1993)
    • Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry Perturbation Theory. 23–37, (1999)
    • Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1980)
    • Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg–de Vries equations. Jpn. J. Ind. Appl. Math. 10, 413–430 (1993)
    • Ogawa, T.: Traveling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)
    • Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys....
    • Sivashinsky, G.I.: Nonlinear ananlysis of hydrodynamic instability in laminar flames I. Derivations of basic equations. Acta Astronaut. 4,...
    • Li, H., Sun, H., Zhu, W.: Solitary waves and periodic waves in a perturbed KdV equation. Qual. Theory Dyn. Syst. 19(83) (2020)
    • Carr, J., Chow, S.N., Hale, J.K.: Abelian integrals and bifurcation theory. J. Differ. Equ. 59, 413–436 (1985)
    • Chow, S.N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986)
    • Cushman, R., Sanders, J.A.: A codimension two bifurcations with a third order Picard-Fuchs equation. J. Differ. Equ. 59, 243–256 (1985)
    • Holzer, M., Doelman, A., Kaper, T.J.: Existence and stability of traveling pulses in a reaction–diffusion–mechanics system. J Nonlinear Sci....
    • Ai, S.: Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal. 42, 833–856 (2010)
    • Bates, P.W., Shi, J.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196, 211–264 (2002)
    • Engler, H., Kaper, H.G., Kaper, T.J., Vo, T.: Dynamical systems analysis of the Maasch–Saltzman model for glacial cycles. Physica D. 359,...
    • Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)
    • Liu, W., Vleck, E.: Turning points and traveling waves in FitzHugh-Nagumo type equations. J. Differ. Equ. 225, 381–410 (2006)
    • Li, J., Lu, K., Bates, P.W.: Normally hyperbolic invariant manifolds for random dynamical systems. Trans. Am. Math. Soc. 365, 5933–5966 (2013)
    • 23. Li, J., Lu, K., Bates, P.W.: Invariant foliations for random dynamical systems. Discrete Contin. Dyn. Syst. 34, 3639–3666 (2014)
    • Li, J., Lu, K., Bates, P.W.: Geometric singular perturbation theory with real noise. J. Differ. Equ. 259, 5137–5167 (2015)
    • Bates, P.W., Li, J., Zhang, M.: Singular fold with real noise. Discrete Contin. Dyn. Syst. Ser. B. 21, 2091–2107 (2016)
    • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm via a geometric approach. J. Funct. Anal. 275, 988–1007...
    • Jones, C.K.R.T.: Geometrical Singular Perturbation Theory. Springer, New York (1995)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno