Ir al contenido

Documat


Gromov’s Amenable Localization and Geodesic Flows

  • Katz, Gabriel [1]
    1. [1] Department of Mathematics, MIT
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 1, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00448-y
  • Enlaces
  • Resumen
    • Let M be a compact smooth Riemannian n-manifold with boundary. We combine Gromov’s amenable localization technique with the Poincaré duality to study the traversally generic geodesic flows on SM, the space of the spherical tangent bundle.

      Such flows generate stratifications of SM, governed by rich universal combinatorics.

      The stratification reflects the ways in which the flow trajectories are tangent to the boundary ∂(SM). Specifically, we get lower estimates of the numbers of connected components of these flow-generated strata of any given codimension k in terms of the normed homology Hk (M; R) and Hk (DM; R), where DM = M ∪∂ M M denotes the double of M. The norms here are the simplicial semi-norms in homology. The more complex the metric on M is, the more numerous the strata of SM and S(DM) are.

      It turns out that the normed homology spaces form obstructions to the existence of globally k-convex traversally generic metrics on M. We also prove that knowing the geodesic scattering map on M makes it possible to reconstruct the stratified topological type of the space of geodesics, as well as the amenably localized Poincaré duality operators on SM.

  • Referencias bibliográficas
    • Allpert, H., Katz, G.: Using simplicial volume to count multi-tangent trajectories of traversing vector fields, Geometriae Dedicata (2015)....
    • Gromov, M.: Volume and bounded cohomology. Publ. Math. I.H.E.S. Tome 56, 5–99 (1982)
    • Gromov, M.: Singularities, Expanders and Topology of Maps. Part I: Homology versus Volume in the Spaces of Cycles, Geometric and Functional...
    • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
    • Katz, G.: Stratified convexity & concavity of gradient flows on manifolds with boundary. Appl. Math. 5, 2823–2848 (2014)
    • Katz, G.: Traversally generic & versal flows: semi-algebraic models of tangency to the boundary. Asian J. Math. 21(1), 127–168 (2017)
    • Katz, G.: Complexity of shadows and traversing flows in terms of the simplicial volume. J. Topol. Anal. 8(3), 501–543 (2016)
    • Katz G.: Causal Holography of traversing flows. J. Dyn. Differ. Equ. (2020). https://doi.org/10.1007/s10884-020-09910-y. arXiv:1409.0588v4...
    • Katz, G.: Causal holography in application to the inverse scattering problem. Inverse Probl. Imaging 13(3), 597–633 (2019). https://doi.org/10.3934/ipi.2019028....
    • Katz, G.: The ball-based origami theorem and a glimpse of holography for traversing flows. Qual. Theory Dyn. Syst. 19, 41 (2020). https://doi.org/10.1007/s12346-020-00364-7
    • Katz, G.: Morse Theory of Gradient Flows. World Scientific, Concavity and Complexity on Manifolds with Boundary 978-981-4368-75-9 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno