Ir al contenido

Documat


The Ball-Based Origami Theorem and a Glimpse of Holography for Traversing Flows

  • Katz, Gabriel [1]
    1. [1] Massachusetts Institute of Technology

      Massachusetts Institute of Technology

      City of Cambridge, Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 1, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00364-7
  • Enlaces
  • Resumen
    • This paper describes a mechanism by which a traversally generic flow v on a smooth connected (n+1)-dimensional manifold X with boundary produces a compact n-dimensional CW-complex T(v), which is homotopy equivalent to X and such that X embeds in T(v)×R. The CW-complex T(v) captures some residual information about the smooth structure on X (such as the stable tangent bundle of X). Moreover, T(v) is obtained from a simplicial origami mapO:Dn→T(v), whose source space is a ball Dn⊂∂X. The fibers of O have the cardinality (n+1) at most. The knowledge of the map O, together with the restriction to Dn of a Lyapunov function f:X→R for v, make it possible to reconstruct the topological type of the pair (X,F(v)), were F(v) is the 1-foliation, generated by v. This fact motivates the use of the word “holography” in the title. In a qualitative formulation of the holography principle, for a massive class of ODE’s on a given compact manifold X, the solutions of the appropriately staged boundary value problems are topologically rigid.

  • Referencias bibliográficas
    • 1. Besson, G., Courtois, G., Gallaot, G.: Minimal entropy and Mostow’s rigidity theorems. Ergod. Theory Dyn. Syst. 16, 623–649 (1996)
    • 2. Croke, C.: Scattering rigidity with trapped geogesics, arXiv:1103.5511v2 [mathDG] 21 Nov 2012
    • 3. Croke, C.: Rigidity theorems in riemannian geometry, chapter in geometric methods in inverse problems and PDE control. The IMA Volumes...
    • 4. Croke, C., Eberlein, P., Kleiner, B.: Conjugacy and rigidity for nonpositively curved manifolds of higher rank. Topology 35, 273–286 (1996)
    • 5. Fenn, R., Rourke, C.: Nice spines of 3-manifolds, Topology of low-dimensional manifolds, Lecture Notes in Mathematics, no. 722, 31–36
    • 6. Gilman, D., Rolfsen, D.: Manifolds and their special spines. Contemp. Math. 20, 145–151 (1983)
    • 7. Gromov, M.: Singularities, expanders and topology of maps. part I: homology versus volume in the spaces of cycles. Geom. Funct. Anal. 19,...
    • 8. Katz, G.: Convexity of Morse stratifications and gradient spines of 3-manifolds. JP J. Geom.Topol. 9(1), 1–119 (2009)
    • 9. Katz, G.: Stratified convexity & concavity of gradient flows on manifolds with boundary. Appl. Math. 5, 2823–2848 http://www.scirp.org/journal/am...
    • 10. Katz, G.: Traversally generic & versal flows: semi-algebraic models of tangency to the boundary. Asian J. Math., vol. 21, No. 1, 127–168...
    • 11. Katz, G.: The stratified spaces of real polynomials & trajectory spaces of traversing flows, JP J. Geom. Topol. vol. 19 No. 2 , 95–160...
    • 12. Katz, G.: Causal holography of traversing flows, arXiv:1409.0588v1 [mathGT] (2 Sep 2014)
    • 13. Katz G.: Causal holography in application to the inverse scattering problem. Inverse Problems Imaging J. 13(3), 597–633 June 2019 (arXiv:1703.08874v1...
    • 14. Katz, G.: Holography and Homology of Traversing Flows. This monograph will be published by World Scientific Co. (Singapore)
    • 15. Katz, G.: Complexity of shadows and traversing flows in terms of the simplicial volume. J. Topol. Anal. 8(3), 501–543 (2016)
    • 16. Noether, E., Der, : Endlichkeitsatz der Invarianten endlicher linearer Gruppen der Charakteristik p. Nachrichten von der Gesellschaft...
    • 17. Stefanov, P.G., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc 18(4), 975–1003 (2005)
    • 18. Stefanov, P., G. Uhlmann, G.: Boundary and lens rigidity, tensor holography, and analytic microlocal analysis, In: Algebraic Analysis...
    • 19. Stefanov, P.G., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom....
    • 20. Stefanov, P.G., Uhlmann, G., Vasy, A.: Rigidity with partial data. J. Am. Math. Soc. 29, 299–332 (2016). http://arxiv.org/abs/1306.2995arXiv.1306.2995
    • 21. Stefanov, P., G. Uhlmann, G., Vasy, A.: Inverting the local geodesic X-ray transform on tensors, Journal d’Analyse Mathematique, to appear,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno