Ir al contenido

Documat


Vector Fields with the Asymptotic Orbital Pseudo-orbit Tracing Property

  • Lee, Manseob [1] ; Park Junmi [2]
    1. [1] Mokwon University

      Mokwon University

      Corea del Sur

    2. [2] Chungnam National University

      Chungnam National University

      Corea del Sur

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00388-z
  • Enlaces
  • Resumen
    • In this paper, we introduce the notion of the asymptotic orbital pseudo-orbit tracing property for a vector field X of a compact smooth manifold M. We show that if a vector field X has the C1 robust asymptotic orbital pseudo-orbit tracing property, then it is Anosov, and if a C1 generic vector field X has the asymptotic orbital pseudo-orbit tracing property, then it is Anosov. Moreover, we also show our results for divergence-free vector fields and Hamiltonian systems.

  • Referencias bibliográficas
    • 1. Arbieto, A., Reis, J.E., Ribeiro, R.: On various types of shadowing for geometric Lorenz flows. Rocky Mountain J. Math. 45, 1067–1090 (2015)
    • 2. Arbieto, A., Ribeiro, R.: Flows with the (asymptotic) average shadowing property on three-dimensional closed manifolds. Dyn. Syst. 26,...
    • 3. Arbieto, A., Senos, L., Sodero, T.: The specification property for flows from the robust and generic viewpoint. J. Differ. Equ. 253, 1893–1909...
    • 4. Bessa, M.: Generic incompressible flows are topological mixing. Comptes Rendus Mathématique 346, 1169–1174 (2008)
    • 5. Bessa, M., Lee, M., Wen, X.: Shadowing, expansiveness and specification forC1-conservative systems. Acta Math. Sci. 35, 583–600 (2015)
    • 6. Bessa, M., Ribeiro, R.: Conservative flows with various types of shadowing chaos. Solitons Fract. 75, 243–252 (2015)
    • 7. Bessa, M., Rocha, J.: On C1-robust transitivity of volume-preserving flows. J. Differ. Equ. 245, 3127– 3143 (2008)
    • 8. Bessa, M., Rocha, J., Torres, M.J.: Hyperbolicity and stability for Hamiltonian flows. J. Differ. Equ. 254, 309–322 (2013)
    • 9. Carvalho, B.: Hyperbolicity, transitivity and the two-sided limit shadowing property. Proc. Am. Math. Soc. 143, 657–666 (2015)
    • 10. Crovisier, S.: Periodic orbits and chain transitive sets of C1 diffeomorphisms. Publ. Math. de L’IHÉS 104, 87–141 (2006)
    • 11. Eirola, T., Nevanlinna, O., Pilyugin, S.Y.: Limit shadowing property. Numer. Funct. Anal. Opt. 18, 75–92 (1997)
    • 12. Ferreira, C.: Stability properties of divergence free vector fields. Dyn. Syst. 27, 223–238 (2012)
    • 13. Gan, S., Li, M.: Orbital shadowing for 3-flows. J. Differ. Equ. 262, 5022–5051 (2017)
    • 14. Gan, S., Wen, L.: Nonsingular star flows satisfy axiom A and the no-cycle condition. Invent. Math. 164, 279–315 (2006)
    • 15. Good, C., Meddaugh, J.: Orbital shadowing, internal chain transitivity and ω-limits. Ergod. Theory Dyn. Syst. 38, 143–154 (2018)
    • 16. Komuro, M.: Lorenz attractors do not have the pseudo-orbit tracing property. J. Math. Soc. Jpn. 37, 489–514 (1985)
    • 17. Kupka, I.: Contribution à la theórie des champs génériques. Contrib. Differ. Equ. 2, 457–484 (1963)
    • 18. Lee, K., Sakai, K.: Structurally stability of vector fields with shadowing. J. Differ. Equ. 232, 303–313 (2007)
    • 19. Lee, M.: Vector fields with stably limit shadowing. Adv. Differ. Equ. 2013(255), 1–6 (2013)
    • 20. Lee, M.: A type of the shadowing properties for generic view points. Axioms 7(1), 1–7 (2018)
    • 21. Lee, M.: Vector fields satisfying the barycenter property. Open Math. 16, 429–436 (2018)
    • 22. Lee, M.: Asymptotic orbital shadowing property for diffeomorphisms. Open Math. 17, 191–201 (2019)
    • 23. Lee, M.: Trnasitivity of flows with limit shadowing. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 26(5), 365–371 (2019)
    • 24. Moriyasu, K., Sakai, K., Sumi, N.: Vector fields with topological stability. Trans. Am. Math. Soc. 353, 3391–3408 (2001)
    • 25. Moser, J.: On the volume elements on a manifold. Trans. Am. Math. Soc. 120, 286–294 (1965)
    • 26. Pilyugin, SYu.: Sets of dynamical systems with various limit shadowing properties. J. Dyn. Differ. Equ. 19, 747–775 (2007)
    • 27. Pilyugin, S.Y., Rodionova, A.A., Sakai, K.: Orbital and weak shadowing properties. Discret. Contin. Dyn. Syst. 9, 287–308 (2003)
    • 28. Robinson, C.: Stability theorems and hyperbolicity in dynamical systems. Rocky Mountain J. Math. 7, 425–437 (1977)
    • 29. Ribeiro, R.: Hyperbolicity and types of shadowing for C1 generic vector fields. Discret. Contin. Dyn. Syst. 34, 2963–2982 (2014)
    • 30. Sakai, K.: Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds. Osaka J. Math. 31, 373–386...
    • 31. Senos, L.: Generic Bowen-expansive flows. Bull. Braz. Math. Soc. 43, 59–71 (2012)
    • 32. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)
    • 33. Vivier, T.: Projective hyperbolicity and fixed points. Ergod. Theory Dyn. Syst. 26, 923–936 (2006)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno