Ir al contenido

Documat


Invariant Subspace Classification and Exact Explicit Solutions to a Class of Nonlinear Wave Equation

  • Chang, Lina [1] ; Liu Hanze [1] ; Xiangpeng, Xin [1]
    1. [1] Liaocheng University

      Liaocheng University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 2, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00400-6
  • Enlaces
  • Resumen
    • In this paper, the invariant subspace classification of a class of nonlinear shallow water wave equation is given, then some exact explicit solutions to the nonlinear equation are provided by using the invariant subspace method. This method is a dynamical system method by nature, for its key step is to transform a nonlinear partial differential equation (PDE) into ordinary differential equation (ODE) systems, then by solving the ODE systems, the exact solutions to the nonlinear PDE are obtained.

  • Referencias bibliográficas
    • 1. Liu, H., Bo, S., Xin, X.: CK transformations, symmetries, exact solutions and conservation laws of the generalized variable-coefficient...
    • 2. Yan, X., Tian, S., Dong, M., Wang, X., Zhang, T.: Nonlocal symmetries, conservation laws and interaction solutions of the generalised dispersive...
    • 3. Dong, M., Tian, S., Yan, X., Zhang, T.: Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq-Burgers...
    • 4. Xin, X., Zhang, L., Xia, Y.: Nonlocal symmetries and exact solutions of the (2+1)-dimensional generalized variable coefficient shallow...
    • 5. Zhang, T.: On Lie symmetry analysis, conservation laws and solitary waves to a longitudinal wave motion equation. Appl. Math. Lett. 98,...
    • 6. Peng, W., Tian, S., Zhang, T.: Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation. EPL...
    • 7. Tian, S., Zhang, Y., Feng, B., Zhang, H.: On the Lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution...
    • 8. Khan, K., Akbar, M.A.: The (exp)(−φ(ξ ))-expansion method for finding Traveling Wave Solutions of Vakhnenko-Parkes Equation. Int. J. Dyn....
    • 9. Khater, M.M.A.: Exact traveling wave solutions for the generalized Hirota-Satsuma couple KdV system using the (exp)(−φ(ξ ))-expansion method....
    • 10. Hafez, M.G.: Exact solutions to the (3+1)-dimensional coupled Klein-Gordon-Zakharov equation using (exp)(−φ(ξ ))-expansion method....
    • 11. Kadkhode, N., Jafari, H.: Analytical solutions of the Gerdjikov-Ivanov equation by using (exp)(−φ(ξ ))-expansion method. Optik. Int. J....
    • 12. Tala-Tebue, E., Djoufack, Z.I., Fendzi-Donfack, E.: Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi...
    • 13. Wang, M.L., Li, X.Z., Zhang, J.Z.: The ( G G )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical...
    • 14. Yong, M.: Expanded ( G G2 ) expansion method to solve separated variables for the (2+1)-dimensional NNV equation. Adv. Math. Phys....
    • 15. Wang, Z., Liu, X.: Bifurcations and exact traveling wave solutions for the KdV-like equation. Nonlinear Dyn. 95, 465–477 (2019)
    • 16. Liu, H., Li, J.: Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations. J. Comput. Appl....
    • 17. Liu, H., Li, J.: Lie symmetry analysis and exact solutions for the extended mKdV equation. Acta. Appl. Math. 109, 1107–1119 (2010)
    • 18. Li, J.: Bifurcations of travelling wave solutions for two generalized Boussinesq systems. Sci. China. Ser. A: Math. 51, 1577–1592 (2008)
    • 19. Zhang, B., Zhu, W., Xia, Y., Bai, Y.: A unified analysis of exact traveling wave solutions for the fractional-order and integer-order...
    • 20. Tu, J., Tian, S., Xu, M., Zhang, T.: On Lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation....
    • 21. Nourazar, S, Soori, M, Nazari-Golshan, A: On the exact solution of Burgers-Huxley equation using the homotopy perturbation method (2015)....
    • 22. Qu, C., Ji, L.: Invariant subspaces and conditional Lie-B?cklund symmetries of inhomogeneous nonlinear diffusion equations. Sci. Chin....
    • 23. Qu, C., Zhu, C.: Classification of coupled systems with two-component nonlinear diffusion equations by the invariant subspace method....
    • 24. Ma, W.: A refined invariant subspace method and applications to evolution equations. Sci. Chin. Math. 55, 1769–1778 (2012)
    • 25. Liu, H.: Invariant subspace classification and exact solutions to the generalized nonlinear DC equation. Appl. Math. Lett. 83, 164–168...
    • 26. Chang, L., Liu, H., Zhang, L.: Symmetry reductions, dynamical behavior and exact explicit solutions to a class of nonlinear shallow water...
    • 27. Guo, Z., Liu, X., Liu, X., Qu, C.: Stability of peakons for the generalized modified Camassa-Holm equation. J. Differe. Equ. 266, 7749–7779...
    • 28. Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry Perturbation Theor. 16, 23–37 (1999)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno