Ir al contenido

Documat


The Gelfand–Shilov Type Estimate for Green’s Function of the Bounded Solutions Problem

  • Kurbatov, V G [1] ; Kurbatova, I V [1]
    1. [1] Voronezh State University

      Voronezh State University

      Rusia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 3, 2018, págs. 619-629
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0262-z
  • Enlaces
  • Resumen
    • An analogue of the Gelfand–Shilov estimate of the matrix exponential is proved for Green’s function of the problem of bounded solutions of the ordinary differential equation x′(t)-Ax(t)=f(t).

  • Referencias bibliográficas
    • 1. Baskakov, A.G.: Some conditions for the invertibility of linear differential and difference operators. Dokl. Akad. Nauk 333(3), 282–284...
    • 2. Baskakov, A.G.: Estimates for the Green’s function and parameters of exponential dichotomy of a hyperbolic operator semigroup and linear...
    • 3. Behncke, H., Hinton, D., Remling, C.: The spectrum of differential operators of order 2n with almost constant coefficients. J. Differ....
    • 4. Bourbaki, N.: Functions of a Real Variable: Elementary Theory. Elements of Mathematics. Springer, Berlin (2004). (Translated from the 1976...
    • 5. Burd, V.Sh., Kolesov, Ju.S., Krasnosel’skii, M.A.: Investigation of the Green’s function of differential operators with almost periodic...
    • 6. Bylov, B.F., Vinograd, R.È., Grobman, D.M., Nemyckii, V.V.: The Theory of Lyapunov Exponents and Its Applications to Problems of Stability....
    • 7. Dalecki˘ı, Ju.L., Kre˘ın, M.G.: Stability of Solutions of Differential Equations in Banach Space, Volume 43 of Translations of Mathematical...
    • 8. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory.Wiley, New York (1988). (Reprint of the 1958 original)
    • 9. Frommer, A., Simoncini, V.: Matrix functions. In: Schilders, W.H., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory,...
    • 10. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Vol. 3: Theory of Differential Equations. Academic Press, New York (1967). (Translated...
    • 11. Gel’fond, A.O.: Calculus of Finite Differences. International Monographs on Advanced Mathematics and Physics. Hindustan Publishing Corp.,...
    • 12. Gil’, M.: Estimate for the norm of matrix-valued functions. Linear Multilinear Algebra 35(1), 65–73 (1993)
    • 13. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Volume of 840 of Lecture Notes in Mathematics. Springer, Berlin (1981)
    • 14. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. Volume 31 of American Mathematical Society Colloquium Publications. American...
    • 15. Jordan, Ch.: Calculus of Finite Differences, 3rd edn. Chelsea Publishing Co., New York (1965)
    • 16. Kurbatov, V.G.: Bounded solutions of differential-difference equations. Sibirsk. Mat. Zh. 27(1), 86–99 (1986). ((in Russian); English...
    • 17. Kurbatov, V.G., Kurbatova, I.V.: Computation of Green’s function of the bounded solutions problem. Comput. Methods Appl. Math. (2017)....
    • 18. Kuznetsova, V.I.: Solvability on the axis and stability of solutions of equations of neutral type with decreasing memory. Ukrain. Mat....
    • 19. Kuznetsova, V.I.: Discrete linear systems with slowly varying parameters. Avtomat. i Telemekh. (7), 43–48 (1990). ( (in Russian); English...
    • 20. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982). (Translated...
    • 21. Mukhamadiev, È.: Studies in the theory of periodic and bounded solutions of differential equations. Mat. Zametki. 30(3), 443–460 (1981)....
    • 22. Pechkurov, A.V.: Bisectorial operator pencils and the problem of bounded solutions. Izv. Vyssh. Uchebn. Zaved. Mat. (3), 31–41 (2012)....
    • 23. Perron, O.: Die stabilitätsfrage bei differentialgleichungen. Math. Z. 32(1), 703–728 (1930)
    • 24. Pokutnyi, A.A.: Bounded solutions of linear and weakly nonlinear differential equations in a Banach space with an unbounded operator in...
    • 25. Pötzsche, C.: Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients. J. Math. Anal....
    • 26. Przeradzki, B.: The existence of bounded solutions for differential equations in Hilbert spaces. Ann. Polon. Math. 56(2), 103–121 (1992)
    • 27. Robinson, C.: Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal. 14(5), 847–860 (1983)
    • 28. Xiao, S.: Stability of linear equations with varying coefficients. J. Syst. Sci. Math. Sci. 16(2), 149–158 (1996)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno