Ir al contenido

Documat


Stokes Phenomenon and Confluence in Non-autonomous Hamiltonian Systems

  • Klimeš, Martin [1]
    1. [1] University of Vienna

      University of Vienna

      Innere Stadt, Austria

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 3, 2018, págs. 665-708
  • Idioma: inglés
  • DOI: 10.1007/s12346-018-0269-0
  • Enlaces
  • Resumen
    • This article studies a confluence of a pair of regular singular points to an irregular one in a generic family of time-dependent Hamiltonian systems in dimension 2. This is a general setting for the understanding of the degeneration of the sixth Painlevé equation to the fifth one. The main result is a theorem of sectoral normalization of the family to an integrable formal normal form, through which is explained the relation between the local monodromy operators at the two regular singularities and the non-linear Stokes phenomenon at the irregular singularity of the limit system. The problem of analytic classification is also addressed.

  • Referencias bibliográficas
    • 1. Arnold, V.I., Varchenko, A.N., Gusein-Zade, S.M.: Singularities of Differentiable Maps, Volume II: Monodromy and Asymptotics of Integrals....
    • 2. Balser, W.: Summability of power series in several variables, with applications to singular perturbation problems and partial differential...
    • 3. Bittmann, A.: Doubly-resonant saddle-nodes in (C3, 0) and the fixed singularity at infinity in the Painlevé equations: formal classification....
    • 4. Bittmann, A.: Doubly-resonant saddle-nodes in (C3, 0) and the fixed singularity at infinity in the Painlevé equations: Analytic classification....
    • 5. Bonckaert, P., De Maesschalck, P.: Gevrey normal forms of vector fields with one zero eigenvalue. J. Math. Anal. Appl. 344, 301–321 (2008)
    • 6. Costin, O., Tanveer, S.: Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane....
    • 7. Duval, A.: Confluence procedures in the generalized hypergeometric family. J. Math. Sci. Univ. Tokyo 5, 597–625 (1998)
    • 8. Françoise, J.-P., Smaïli, M.: Lemme de Morse transverse pour des puissances de formes de volume. Ann. Fac. Sci. Toulouse 6e Série 3, 81–89...
    • 9. Glutsyuk, A.: Confluence of singular points and the nonlinear Stokes phenomena. Trans. Mosc. Math. Soc. 62, 49–95 (2001)
    • 10. Hurtubise, J., Lambert, C., Rousseau, C.: Complete system of analytic invariants for unfolded differential linear systems with an irregular...
    • 11. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations, Grad. Studies Math. 86, Amer. Math. Soc., Providence (2008)
    • 12. Kawai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory. Translations of Mathematical Monographs, vol. 277. American...
    • 13. Klimeš, M.: Confluence of singularities of non-linear differential equations via Borel-Laplace transformations. J. Dyn. Control Syst....
    • 14. Klimeš, M.: Non-linear Stokes phenomenon in the fifth Painlevé equation and a wild monodromy action on the character variety, arXiv:1609.05185...
    • 15. Lambert, C., Rousseau, C.: Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity...
    • 16. Mardeši´c, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc....
    • 17. Martinet, J., Ramis, J.-P.: Problèmes de modules pour des équations différentielles non linéaires du premier ordre. Publ. Math. IHES 55,...
    • 18. Martinet, J., Ramis, J.-P.: Classification analytique des équations différentielles non linéaires résonnantes du premier ordre. Ann. Sci....
    • 19. Martinet, J., Ramis, J.-P.: Elementary acceleration and multisummability. I. Ann. Inst. Henri Poincaré (A) Physique théorique 54, 331–401...
    • 20. Mattei, J.-F., Moussu, R.: Holonomie et intégrales premières. Ann. Sci. É.N.S. 4e série 13, 469–523 (1980)
    • 21. Okamoto, K.: Polynomial Hamiltonians associated with Painlevé Equations. I. Proc. Jpn. Acad. Ser. A Math. Sci. 56, 264–268 (1980)
    • 22. Parise, L.: Confluence de singularités régulières d’équations différentielles en une singularité irrégulière. Modèle de Garnier, thèse...
    • 23. Ramis, J.-P.: Confluence and resurgence. J. Fac. Sci. Univ. Tokyo Sec. IA 36, 703–716 (1989)
    • 24. Rebelo, J., Reis, H.: Local theory of holomorphic foliations and vector fields, arXiv:1101.4309 (2011)
    • 25. Rousseau, C., Teyssier, L.: Analytical moduli for unfoldings of saddle-node vector fields. Mosc. Math. J. 8, 547–614 (2008)
    • 26. Rousseau, C., Teyssier, L.: Analytical normal and inverse problems forms for unfoldings of 2- dimensional saddle-nodes with analytic center...
    • 27. Shimomura, S.: Analytic integration of some nonlinear ordinary differential equations and the fifth Painlevé equation in the neighborhood...
    • 28. Siegel, C.L., Moser, J.K.: Lectures on Celestial Mechanics. Grundlehren der mathematische Wissenschaften, vol. 187. Springer, Berlin (1971)
    • 29. Singer, M., van der Put, M.: Galois Theory of Linear Differential Equations. Grundlehren der Mathematische Wissenschaften, vol. 328. Springer,...
    • 30. Takano, K.: A 2-parameter family of solutions of Painlevé equation (V) near the point at infinity. Funkcialaj Ekvacioj 26, 79–113 (1983)
    • 31. Takano, K.: Reduction for Painlevé equations at the fixed singular points of the first kind. Funkcialaj Ekvacioj 29, 99–119 (1986)
    • 32. Takano, K.: Reduction for Painlevé equations at the fixed singular points of the second kind. J. Math. Soc. Jpn. 42, 423–443 (1990)
    • 33. Teyssier, L.: Équation homologique et cycles asymptotiques d’une singularité col-nœud. Bull. Sci. Math. 128, 167–187 (2004)
    • 34. Yoshida, S.: A general solution of a nonlinear 2-system without Poincaré’s condition at an irregular singular point. Funkcialaj Ekvacioj...
    • 35. Yoshida, S.: 2-parameter family of solutions of Painlevé equations (I)–(V) at an irregular singular point. Funkcialaj Ekvacioj 28, 233–248...
    • 36. Vey, J.: Sur le lemme de Morse. Invent. Math. 40, 1–9 (1977)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno