Ir al contenido

Documat


Doubly-Resonant Saddle-Nodes in C3 and the Fixed Singularity at Infinity in the Painlevé Equations: Formal Classification

  • Amaury Bittmann [1]
    1. [1] University of Strasbourg

      University of Strasbourg

      Arrondissement de Strasbourg-Ville, Francia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 16, Nº 3, 2017, págs. 491-529
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this work we consider formal singular vector fields in C3 with an isolated and doubly-resonant singularity of saddle-node type at the origin. Such vector fields come from irregular two-dimensional systems with two opposite non-zero eigenvalues, and appear for instance when studying the irregular singularity at infinity in Painlevé equations Pj , j ∈ {I, I I, III, I V, V }, for generic values of the parameters. Under generic assumptions we give a complete formal classification for the action of formal diffeomorphisms (by changes of coordinates) fixing the origin and fibered in the independent variable x. We also identify all formal isotropies (self-conjugacies) of the normal forms. In the particular case where the flow preserves a transverse symplectic structure, e.g. for Painlevé equations, we prove that the normalizing map can be chosen to preserve the transverse symplectic form.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno