Laura Cano, Patricia Domínguez, Josué Vázquez
In 1736 L. Euler dio solución al famoso problema de los Siete Puentes de Königsberg, considerando un grafo formado por nodos que representaban las masas de tierra y arcos que representaban los puentes. Esteproblema es un referente de cómo codificar la información proporcionada de un problema en una estructura más simple y más rica. En el caso de Dinámica de funciones racionales, Shishikura en [5] explora esta idea en el contexto, y enuncia una conexión entre un tipo específico de árbol topológico y un p- ciclo de anillos de Herman asociados a una función racional. En este trabajo desarrollamos algunos ejemplos de configuraciones realizables por funciones racionales, dos de ellas bosquejadas en [5], y un ejemplo de una configuración no realizable, la cual modificamos para que sea realizable.
In 1736 L. Euler gave solution to the famous Seven Bridges of Königsberg problem, considerin a graph consisting of nodes representing the landmasses and arcs representing the bridges. This problem is a referent of how to codify the information given of a problem into a simpler and richer structure. In the case of the Dynamics of rational functions, Shishikura in [5] explores this idea in the context of rational functions, and he stated a connection between a certain kind of topological tree with a p-cycle of Herman rings associated to a rational function. In this work we develop some examples of realizable configurations for rational functions, two of them sketched in [5], and an example of a non realizable configuration which we modify in order to be realizable.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados