Ir al contenido

Documat


Prediction of elementary mathematics grades by cognitive abilities

  • Autores: Sven Hilbert, Georg Bruckmaier, Karin Binder, Stefan Krauss, Markus Bühner
  • Localización: European Journal of Psychology of Education, ISSN-e 1878-5174, ISSN 0256-2928, Vol. 34, Nº 3, 2019, págs. 665-683
  • Idioma: inglés
  • DOI: 10.1007/s10212-018-0394-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the present study, the relationship between the mathematics grade and the three basic cognitive abilities (inhibition, working memory, and reasoning) was analyzed regarding possible alterations during elementary school. In a sample of N = 244 children, the mathematics grade was best predicted by working memory performance in the second grade and by reasoning in the third and fourth grades. Differentiation of these abilities during elementary school was considered as a cause for this pattern but discarded after the analysis of structural equation models. Thus, with respect to output-orientated curricula, scholastic standards, and a large inter-individual heterogeneity of students, it is implied for teachers to account for different cognitive strengths and weaknesses of their students, using adequate tasks and teaching strategies like self-differentiating tasks and adaptive explorative learning.

  • Referencias bibliográficas
    • Asch, S. E. (1936). A study of change in mental organization. Archives of Psychology, 28, 1–30.
    • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.
    • Baumert, J., Lüdtke, O., Trautwein, U., & Brunner, M. (2009). Large-scale student assessment studies measure the results of processes...
    • Bjorklund, D. F., & Harnishfeger, K. K. (1990). The resources construct in cognitive development: Diverse sources of evidence and a theory...
    • Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent...
    • Blair, C., Gamson, D., Thorne, S., & Baker, D. (2005). Rising mean IQ: Cognitive demand of mathematics education for young children, population...
    • Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York: Springer.
    • BMB – Bundesministerium für Bildung (2014). Lehrplan der Volksschule – Mathematik. Retrieved from www.bmb.gv.at/schulen/unterricht/lp/VS7T_Mathematik_3996.pdf
    • Brunner, M. (2008). No g in education? Learning and Individual Differences, 18(2), 152–165.
    • Brunner, M., Krauss, S., & Kunter, M. (2008). Gender differences in mathematics: Does the story need to be rewritten? Intelligence, 36,...
    • Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: Inhibition, switching, and working...
    • Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal...
    • CCSSI – Common Core State Standards Initiative (2010). Common core state standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
    • Cerda, G., Ortega, R., Pérez, C., Flores, C., & Melipillán, R. (2011). Inteligencia lógica y rendimiento académico en matemáticas: un...
    • Clark, C. A., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement....
    • Cobb, P., & Jackson, K. (2011). Assessing the quality of the common core state standards for mathematics. Educational Researcher, 40(4),...
    • Connelly, S. L., Hasher, L., & Zacks, R. T. (1991). Age and reading: The impact of distraction. Psychology and aging, 6(4), 533.
    • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory...
    • Cragg, L., & Gilmore, C. (2014). Skills underlying mathematics: The role of executive function in the development of mathematics proficiency....
    • Crone, E. A., Wendelken, C., Donohue, S., Van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate...
    • Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13...
    • Deary, I. J., Egan, V., Gibson, G. J., Austin, E. J., Brand, C. R., & Kellaghan, T. (1996). Intelligence and the differentiation hypothesis....
    • Dempster, F. N., Corkill, A. J., & Jacobi, K. (1995). Individual differences in resistance to interference. In Annual Meeting of the Psychonomic...
    • Der, G., & Deary, I. J. (2003). IQ, reaction time and the differentiation hypothesis. Intelligence, 31(5), 491–503.
    • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence:...
    • Facon, B. (2006). Does age moderate the effect of IQ on the differentiation of cognitive abilities during childhood? Intelligence, 34(4),...
    • Filella, J. F. (1960). Educational and sex differences in the organization of abilities in technical and academic students in Colombia, South...
    • Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of Cattell-Horn-Carroll (CHC) cognitive abilities and mathematics...
    • Garrett, H. E. (1946). A developmental theory of intelligence. American Psychologist, 1(9), 372–378.
    • Hammer, S., Reiss, K., Lehner, M. C., Heine, J. H., Sälzer, C., & Heinze, A. (2015). Mathematische Kompetenz in PISA 2015: Ergebnisse,...
    • Heene, M., Hilbert, S., Draxler, C., Ziegler, M., & Bühner, M. (2011). Masking misfit in confirmatory factor analysis by increasing unique...
    • Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15(1), 63–73.
    • Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new...
    • Hülür, G., Wilhelm, O., & Robitzsch, A. (2011). Intelligence differentiation in early childhood. Journal of Individual Differences, 32(3),...
    • Hyde, J. S., Fennema, E., & Lamon, S. J. (1990). Gender differences in mathematics performance: A meta-analysis.
    • Johnson, W., Bouchard Jr., T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test...
    • Juan-Espinosa, M., García, L. F., Colom, R., & Abad, F. J. (2000). Testing the age related differentiation hypothesis through the Wechsler’s...
    • Kelley, K. (2018). MBESS: The MBESS R Package. R package version 4.4.3. https://CRAN.Rproject.org/package=MBESS. Retrieved: June 11th,...
    • KMK – Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Hrsg.) (2004). Bildungsstandards im Fach Mathematik...
    • Krumm, S., Schmidt-Atzert, L., Bühner, M., Ziegler, M., Michalczyk, K., & Arrow, K. (2009). Storage and non-storage components of working...
    • Kunter, M., & Voss, T. (2013). The model of instructional quality in COACTIV: A multicriteria analysis. In M. Kunter, J. Baumert, W. Blum,...
    • Kunter, M., Klusmann, U., Baumert, J., Richter, D., Voss, T., & Hachfeld, A. (2013). Professional competence of teachers: Effects on instructional...
    • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity. Intelligence, 14(4), 389–433.
    • Leder, G., & Forgasz, H. (2008). Mathematics education: New perspectives on gender. ZDM, 40(4), 513–518.
    • Leuders, T., Philipp, K., & Leuders, J., (2018). Diagnostic competence of mathematics teachers—unpacking a complex construct in teacher...
    • Limerick, B., Clarke, J., & Daws, L. (1997). Problem-based learning within a post-modern framework: A process for a new generation? Teaching...
    • MacLeod, C. M. (2007). The concept of inhibition in cognition. In D. S. Gorfein & C. M. MacLeod (Eds.), Inhibition in cognition (pp. 3–23)....
    • Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. International Association...
    • O’Grady, K. E. (1990). A confirmatory maximum likelihood factor analysis of the WPPSI. Personality and Individual Differences, 11(2), 135–140.
    • Oberauer, K., Süß, H. M., Wilhelm, O., & Wittman, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision,...
    • Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in...
    • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
    • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference,...
    • Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary...
    • Raven, J. C. (1941). Standardization of progressive matrices, 1938. Psychology and Psychotherapy: Theory, Research and Practice, 19(1), 137–150.
    • Raven, J., Raven, J. C., & Court, J. H. (2000). Standard progressive matrices. Oxford: Oxford Psychologists.
    • Rindermann, H. (2007). The g-factor of international cognitive ability comparisons: The homogeneity of results in PISA, TIMSS, PIRLS and IQ-tests...
    • Rindermann, H. (2008). Relevance of education and intelligence for the political development of nations: Democracy, rule of law and political...
    • Rohde, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35(1), 83–92.
    • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.
    • Sackett, P. R., & Yang, H. (2000). Correction for range restriction: An expanded typology. Journal of Applied Psychology, 85(1), 112–118.
    • Saß, S., Kampa, N., & Köller, O. (2017). The interplay of g and mathematical abilities in large-scale assessments across grades. Intelligence,...
    • Saxe, G. B. (2015). Culture and cognitive development: Studies in mathematical understanding. Hillsdale: Lawrence Erlbaum Associates, Inc.
    • Schmid, V. (2010). TEMEKKO (Doctoral dissertation, Ludwig-Maximilians-University of Munich).
    • Selter, C. (2001). Addition and subtraction of three-digit numbers: German elementary children’s success, methods and strategies. Educational...
    • Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., et al. (2006). Intellectual ability and cortical development in...
    • Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children....
    • Spearman, C. (1926). Some issues in the theory of “G” (including the law of diminishing returns). Paper presented at the British Association...
    • Spinath, B., Spinath, F. M., Harlaar, N., & Plomin, R. (2006). Predicting school achievement from general cognitive ability, self-perceived...
    • Stamovlasis, D., & Tsaparlis, G. (2005). Cognitive variables in problem solving: A nonlinear approach. International Journal of Science...
    • Stanovich, K. E., Cunningham, A. E., & Feeman, D. J. (1984). Intelligence, cognitive skills, and early reading progress. Reading Research...
    • Tartre, L. A., & Fennema, E. (1995). Mathematics achievement and gender: A longitudinal study of selected cognitive and affective variables...
    • Tideman, E., & Gustafsson, J. E. (2004). Age-related differentiation of cognitive abilities in ages 3-7. Personality and Individual Differences,...
    • Tucker-Drob, E. M. (2009). Differentiation of cognitive abilities across the life span. Developmental psychology, 45(4), 1097.
    • Van Dooren, W., & Inglis, M. (2015a). Inhibitory control in mathematical thinking, learning and problem solving. ZDM, 47(5).
    • Van Dooren, W., & Inglis, M. (2015b). Inhibitory control in mathematical thinking, learning and problem solving: A survey. ZDM, 47(5),...
    • Wilson, K. M., & Swanson, H. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit?...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno