Ir al contenido

Documat


Shunning algebraic formalism: Student teachers and the intricacy of percents

  • Autores: Heidi Strømskag
  • Localización: Recherches en didactique des mathématiques, ISSN 0246-9367, Vol. 40, Nº 1, 2020, págs. 55-96
  • Idioma: inglés
  • Títulos paralelos:
    • Rehuyendo el formalismo algebraico: Los profesores en formación y el laberinto de los porcentajes
    • Sans formalisme algébrique aucun: Des élèves professeurs face aux pièges des pourcentages
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • español

      Este artículo investiga cómo los estudiantes en formación inicial para profesores de educación primaria y secundaria obligatoria utilizan y dominan el formalismo algebraico al resolver la tarea de determinar la tasa de crecimiento del área de un cuadrado cuando el lado de éste se incrementa un p%. El material empírico consiste en una grabación en vídeo de una sesión de trabajo en pequeño grupo en la que un grupo de tres estudiantes resuelve la tarea (interactuando con la formadora). Se utilizan como herramientas de análisis nociones de la teoría de las situaciones didácticas en matemáticas y de la teoría semiótica. El análisis muestra cómo la notación de los porcentajes complica la tarea y cómo se evitan los cálculos algebraicos. Se muestra también cómo una evolución del medio da lugar a la creación de manipulativos que proporcionan a los estudiantes representaciones en distintos registros semióticos, el de las figuras geométricas planas, que se transforman en notación porcentual con el fin de resolver la tarea. Se discuten finalmente las implicaciones didácticas tanto en el diseño de tareas de este tipo como en la formación del profesorado.

    • English

      This paper investigates primary and lower secondary school student teachers’ use and mastery of algebraic formalism in solving the task of determining the rate of increase of a square’s area when the square’s side increases by p%. The empirical material consists of a video-recorded small-group session where a triad of student teachers was solving this task (with teacher interaction). Notions from the theory of didactical situations in mathematics and semiotic theory are used as analytic tools. The analysis shows how percent notation complicated the task, and how algebraic calculations were avoided. It is further shown how an evolution of the milieu gave rise to creation of manipulatives that provided the student teachers with representations from a different semiotic register, that of plane geometric figures, which were transformed into percent notation that enabled them to produce a solution to the task. Didactical implications are discussed regarding design of such a task on the one hand, and teacher education on the other hand.

    • français

      Cette étude porte sur l’emploi et la maîtrise, par de futurs professeurs du primaire et du début du collège, du formalisme algébrique dans la détermination du taux de croissance de l’aire d’un carré dont le côté croît de p %. Les données empiriques consistent en l’enregistrement vidéo d’une séance de travail d’une triade d’élèves professeurs s’efforçant de résoudre ce problème (en interaction avec leur professeur). Les outils d’analyse utilisés relèvent de la théorie des situations didactiques en mathématiques et de la théorie sémiotique. L’analyse montre comment la notation en termes de pourcentages complique la tâche visée et comment se trouve évité tout calcul algébrique. On montre en outre comment une évolution du milieu engendre la création d’un matériel fournissant aux élèves professeurs une représentation du problème relevant d’un autre registre sémiotique, celui des figures géométriques, dont la traduction en pourcentages permet d’arriver à une solution au problème étudié. La discussion des implications didactiques de cette étude porte sur la conception de la tâche considérée, d’une part, et sur l’apport possible en termes de formation des enseignants, d’autre part.

  • Referencias bibliográficas
    • ALGEBRA. (2019). In American heritage dictionary of the English language. Retrieved from https://www.ahdictionary.com/word/search.html?q=...
    • BALACHEFF, N. (1988). Aspects of proof in pupil’s practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp....
    • BASSEY, M. (1999). Case study research in educational settings. London: Open University Press.
    • BERGEM, O. K. (2016). Hovedresultater i matematikk [Main results in mathematics]. In O. K. Bergem, H. Kaarstein, & T. Nilsen (Eds.), Vi...
    • BLANTON, M., BRIZUELA, B., GARDINER, A., SAWREY, K., & NEWMANOWENS, A. (2017). A progression in first-grade children’s thinking about variable...
    • BOSCH, M. (2015). Doing research within the anthropological theory of the didactic: The case of school algebra. In S. J. Cho (Ed.), Selected regular...
    • BOSCH, M., CHEVALLARD, Y., & GASCÓN, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. In M. Bosch (Ed.),...
    • BROUSSEAU, G. (1997). The theory of didactical situations in mathematics: Didactique des mathématiques, 1970–1990 (N. Balacheff, M. Cooper,...
    • BROUSSEAU, G. (2006). Mathematics, didactical engineering, and observation. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.),...
    • DIRECTORATE FOR EDUCATION AND TRAINING. (2013). Læreplan i matematikk fellesfag [Curriculum for the common core subject of mathematics]. Retrieved...
    • DUVAL, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics...
    • DUVAL, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.
    • ELY, R., & ADAMS, A. E. (2012). Unknown, placeholder, or variable: What is x? Mathematics Education Research Journal, 24, 19–38.
    • GATTEGNO, C. (2010). The science of education Part 2B: The awareness of mathematization (2nd ed.). New York: Educational Solutions. (Original...
    • GRØNMO, L. S., ONSTAD, T., NILSEN, T., HOLE, A., ASLAKSEN, H., & BORGE, I. C. (2012). Framgang, men langt fram [Progress, but far ahead]....
    • HERSCOVICS, N., & LINCHEVSKI, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59–78.
    • HODGEN, J., OLDENBURG, R., & STRØMSKAG, H. (2018). Algebraic thinking. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.),...
    • KAPUT, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in...
    • KAPUT, J. J., BLANTON, M. L., & MORENO, L. (2008). Algebra from a symbolization point of view. In J. J. Kaput, D. W. Carraher, & M....
    • KATZ, V. (Ed.). (2007). Algebra: Gateway to a technological future. Washington, DC: The Mathematical Association of America.
    • KENDAL, M., & STACEY, K. (2004). Algebra: A world of difference. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching...
    • KIERAN, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of research on teaching and learning (pp. 390– 419)....
    • KIERAN, C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of...
    • KIERAN, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation....
    • KJÆRNSLI, M., & OLSEN, R. V. (Eds.). (2013). Fortsatt en vei å gå: Norske elevers kompetanse i matematikk, naturfag og lesing i PISA 2012 [Still...
    • KÜCHEMANN, D. (1981). Algebra. In K. M. Hart (Ed.), Children’s understanding of mathematics: 11–16 (pp. 102–119). London: John Murray.
    • LANG, S., & MURROW, G. (1983). Geometry. A high school course. New York: Springer-Verlag.
    • MACGREGOR, M., & STACEY, K. (1997). Students' understanding of algebraic notation: 11–15. Educational Studies in Mathematics, 33,...
    • MANGIANTE-ORSOLA, C., PERRIN-GLORIAN, M.-J., & STRØMSKAG, H. (2018). Theory of didactical situations as a tool to understand and develop...
    • NORTVEDT, G. A., & BULIEN, T. (2018). Norsk Matematikkråds forkunnskapstest 2017 [The Norwegian Mathematical Council’s priorknowledge test...
    • NORTVEDT, G. A., & PETTERSEN, A. (2016). Matematikk. In M. Kjærnsli & F. Jensen (Eds.), Stø kurs: Norske elevers kompetanse i naturfag, matematikk...
    • OECD. (2016). PISA 2015 results (Volume I): Excellence and equity in education. Paris: OECD Publishing.
    • PARKER, M., & LEINHARDT, G. (1995). Percent: A privileged proportion. Review of Educational Research, 65, 421–481.
    • RADFORD, L. (2014). The progressive development of early embodied algebraic thinking. Mathematics Education Research Journal, 26, 257– 277.
    • RADFORD, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and learning algebraic thinking...
    • RIDEOUT, B. (2008). Pappus reborn. Pappus of Alexandria and the changing face of analysis and synthesis in late antiquity (Master’s thesis, University...
    • ROBSON, C. (2011). Real world research: A resource for social scientists and practitioner-researchers (3rd ed.). Oxford: Blackwell.
    • RUIZ-MUNZÓN, N., BOSCH, M., & GASCÓN, J. (2013). Comparing approaches through a reference epistemological model: The case of algebra....
    • SELVIK, B. K., RINVOLD, R., & HØINES, M. J. (2007). Matematiske sammenhenger: Algebra og funksjonslære. [Mathematical connections: Algebra...
    • SQUALLI, H. (2015). La généralisation algébrique comme abstraction d’invariants essentiels. In L. Theis (Ed.), Pluralités culturelles et universalité...
    • STACEY, K., CHICK, H., & KENDAL, M. (Eds.). (2004). The future of the teaching and learning of algebra: The 12th ICMI Study. Dordrecht,...
    • STAKE, R. E. (2005). Qualitative case studies. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (3rd ed.) (pp....
    • STRØMSKAG, H. (2015). A pattern-based approach to elementary algebra. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of...
    • STRØMSKAG MÅSØVAL, H. (2011). Factors constraining students’ appropriation of algebraic generality in shape pattern: A case study of didactical...
    • STYLIANIDES, A. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38, 289–321.
    • USISKIN, Z., & BELL, M. S. (1983). Applying arithmetic: A Handbook of applications of arithmetic. Part I. Numbers. Chicago, IL: University...
    • VOLTAIRE, F. (1759). Candide. Electronic Scholarly Publishing Project, 1998. Retrieved from http://www.esp.org/books/voltaire/candide.pdf
    • WATSON, A. (2009). Paper 6: Algebraic reasoning. In T. Nunez, P. Bryant, & A. Watson (Eds.), Key understandings in mathematics learning:...
    • WHITEHEAD, A. N. (1947). Essays in science and philosophy. New York: Philosophical Library.
    • YIN, R. K. (2009). Case study research: Design and methods (4th ed.). Los Angeles, CA: Sage.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno