Ir al contenido

Documat


Local cohomology of binomial edge ideals and their generic initial ideals

  • Autores: Josep Àlvarez Montaner Árbol académico
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 71, Fasc. 2, 2020, págs. 331-348
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00268-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We provide a Hochster type formula for the local cohomology modules of binomial edge ideals. As a consequence we obtain a simple criterion for the Cohen–Macaulayness and Buchsbaumness of these ideals and we describe their Castelnuovo–Mumford regularity and their Hilbert series. Conca and Varbaro (Square-free Groebner degenerations, 2018) have recently proved a conjecture of Conca, De Negri and Gorla (J Comb Algebra 2:231–257, 2018) relating the graded components of the local cohomology modules of Cartwright–Sturmfels ideals and their generic initial ideals. We provide an alternative proof for the case of binomial edge ideals.

  • Referencias bibliográficas
    • Àlvarez Montaner, J., García López, R., Zarzuela Armengou, S.: Local cohomology, arrangements of subspaces and monomial ideals. Adv. Math....
    • Àlvarez Montaner, J., Boix, A.F., Zarzuela, S.: On some local cohomology spectral sequences. Int. Math. Res. Not. (2018). https://doi.org/10.1093/imrn/rny186
    • Banerjee, A., Núñez-Betancourt, L.: Graph connectivity and binomial edge ideals. Proc. Am. Math. Soc. 145, 487–499 (2017)
    • Bolognini, D., Macchia, A., Strazzanti, F.: Binomial edge ideals of bipartite graphs. Eur. J. Comb. 70, 1–25 (2018)
    • Bouchiba, S., Kabbaj, S.: Tensor products of Cohen–Macaulay rings: solution to a problem of Grothendieck. J. Algebra 252, 65–73 (2002)
    • Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge (1993)
    • Cartwright, D., Sturmfels, B.: The Hilbert scheme of the diagonal in a product of projective spaces. Int. Math. Res. Not. 9, 1741–1771 (2010)
    • Conca, A., De Negri, E., Gorla, E.: Universal Gröbner bases for maximal minors. Int. Math. Res. Not. 11, 3245–3262 (2015)
    • Conca, A., De Negri, E., Gorla, E.: Universal Gröbner bases and Cartwright–Sturmfels ideals. Int. Math. Res. Not. (2018). https://doi.org/10.1093/imrn/rny075
    • Conca, A., De Negri, E., Gorla, E.: Multigraded generic initial ideals of determinantal ideals. In: Homological and Computational Methods...
    • Conca, A., De Negri, E., Gorla, E.: Cartwright-Sturmfels ideals associated to graphs and linear spaces. J. Comb. Algebra 2, 231–257 (2018)
    • Conca, A., Herzog, J.: On the Hilbert function of determinantal rings and their canonical module. Proc. Am. Math. Soc. 122, 677–681 (1994)
    • Conca, A., Varbaro, M.: Square-free Groebner degenerations. (2018). Preprint arXiv:1805.11923
    • de Alba, H., Hoang, D.T.: On the extremal Betti numbers of the binomial edge ideal of closed graphs. Math. Nachr. 291, 28–40 (2018)
    • Ene, V., Herzog, J., Hibi, T.: Cohen-Macaulay binomial edge ideals. Nagoya Math. J. 204, 57–68 (2011)
    • Ene, V., Zarojanu, A.: On the regularity of binomial edge ideals. Math. Nachr. 288, 19–24 (2015)
    • Grothendieck, A.: Eléments de géométrie algébrique, Institut des Hautes Etudes Sci. Publ. Math., vol. 24, Bures-sur-yvette (1965)
    • Herzog, J., Hibi, T., Hreinsdottir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math....
    • Herzog, J., Rinaldo, G.: On the extremal Betti numbers of binomial edge ideals of block graphs. Electron. J. Combin. 25(1), 1.63 (2018)
    • Hochster, M.: Cohen–Macaulay rings, combinatorics, and simplicial complexes. In: Proceedings of the 2nd Conference on Ring theory, II Univ....
    • Jayanthan, A.V., Kumar, A.: Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs. Commun. Algebra 47, 4797–4805 (2019)
    • Jayanthan, A.V., Narayanan, N., Raghavendra Rao, B.V.: Regularity of binomial edge ideals of certain block graphs. Proc. Indian Acad. Sci....
    • Jayanthan, A.V., Narayanan, N., Raghavendra Rao, B.V.: An upper bound for the regularity of binomial edge ideals of trees. J. Algebra Appl....
    • Kumar, A., Sarkar, R.: Hilbert series of binomial edge ideals. Commun. Algebra 47, 3830–3841 (2019)
    • Mascia, C., Rinaldo, G.: Krull dimension and regularity of binomial edge ideals of block graphs. J. Algebra Appl. (2019). https://doi.org/10.1142/S0219498820501339
    • Mascia, C., Rinaldo, G.: Extremal Betti numbers of some Cohen-Macaulay binomial edge ideals. Preprint arXiv:1809.03423
    • Matsuda, K., Murai, S.: Regularity bounds for binomial edge ideals. J. Commun. Algebra 5, 141–149 (2013)
    • Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, p. 417. Springer, New York (2005)
    • Mohammadi, F., Sharifan, L.: Hilbert function of binomial edge ideals. Commun. Algebra 42, 688–703 (2014)
    • Ohtani, M.: Graphs and ideals generated by some 2-minors. Commun. Algebra 39, 905–917 (2011)
    • Rauf, A., Rinaldo, G.: Construction of Cohen–Macaulay binomial edge ideals. Commun. Algebra. 42, 238–252 (2014)
    • Rinaldo, G.: Cohen–Macaulay binomial edge ideals of small deviation. Bull. Math. Soc. Sci. Math. Roumanie 56(104), 497–503 (2013)
    • Rinaldo, G.: Cohen-Macaulay binomial edge ideals of cactus graphs. J. Algebra Appl. 18(4), 1950072 (2019)
    • Saeedi Madani, S., Kiani, D.: Binomial edge ideals of graphs. Electron. J. Comb. 19, P44 (2012)
    • Schenzel, P., Zafar, S.: Algebraic properties of the binomial edge ideal of a complete bipartite graph. An. Stiint Univ. “Ovidius” Constanza...
    • Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics, 41, 2nd edn. Birkhäuser Boston Inc, Boston, MA (1996)
    • Watanabe, K.I., Ishikawa, T., Tachibana, S., Otsuka, K.: On tensor products of Gorenstein rings. J. Math. Kyoto Univ. 9, 413–423 (1969)
    • Zahid, Z., Zafar, S.: On the Betti numbers of some classes of binomial edge ideals. Electron. J. Comb. 20, P37 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno