* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra:
1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics
Contents.- Preface to the Second Edition.- Preface to the First Edition.- Notation.- Background: Combinatorics.- Commutative algebra and homological algebra.- Topology.- Chapter I: Nonnegative Integral Solutions to Linear Equations: Integer stochastic matrices (magic squares).- Graded algebras and modules.- Elementary aspects of N-solutions to linear equations.- Integer stochastic matrices again.- Dimension, depth, and Cohen-Macaulay modules.- Local cohomology.- Local cohomology of the modules M phi,alpha.- Reciprocity.- Reciprocity for integer stochastic matrices.- Rational points in integer polytopes.- Free resolutions.- Duality and canonical modules.- A final look at linear equations.- Chapter II: The Face Ring of a Simplicial Complex: Elementary properties of the face ring.- f-vectors and h-vectors of complexes and multicomplexes.- Cohen-Macaulay complexes and the Upper Bound Conjecture.- Homological properties of face rings.- Gorenstein face rings.- Gorenstein Hilbert Functions.- Canonical modules of face rings.- Buchsbaum complexes.- Chapter III: Further Aspects of Face Rings: Simplicial polytopes, toric varieties, and the g-theorem.- Shellable simplicial complexes.- Matroid complexes, level complexes, and doubly Cohen-Macaulay complexes.- Balances complexes, order complexes, and flag complexes.- Splines.- Algebras with straightening law and simplical posets.- Relative simplical complexes.- Group actions.- Subcomplexes.- Subdivisions.- Problems on Simplicial Complexes and their Face Rings.- Bibliography.- Index.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados