Ir al contenido

Documat


Desarrollo de un servicio online para el uso de técnicas de aprendizaje automático orientadas a la detección de anomalías en la evaluación docente

    1. [1] Universitat d'Alacant - Universidad de Alicante
  • Localización: Memòries del Programa de Xarxes-I3CE de qualitat, innovació i investigació en docència universitària: convocatòria 2018-19 / coord. por Jordi M. Antolí Martínez Árbol académico, Asunción Lledó Carreres Árbol académico, Neus Pellín Buades; Rosabel Roig Vila (dir.) Árbol académico, 2019, ISBN 978-84-09-15746-4, pág. 681
  • Idioma: español
  • Enlaces
  • Resumen
    • Uno de procesos más importantes en casi todos los modelos de enseñanza universitaria es la evaluación. Los criterios que se establecen en una asignatura orientan la forma en la que se obtiene la calificación final del alumno. Por este motivo es importante realizar un seguimiento continuado del aprendizaje del estudiante y de sus calificaciones, permitiendo de este modo la detección de anomalías para proceder con una intervención inmediata que permita corregir la situación. Normalmente, en los primeros cursos universitarios el número de alumnos es elevado, lo que redunda en el detrimento del seguimiento que se le puede realizar a los estudiantes por parte del profesor. En el trabajo realizado en esta red docente se propone un sistema para predecir la calificación de un estudiante en una determinada actividad, de forma que se notifique al profesor cuando la calificación se aleje del valor predicho. Para esto se ha realizado un estudio de 24 algoritmos de inteligencia artificial, seleccionando finalmente los más adecuados para el caso de estudio realizado. Los resultados experimentales muestran la utilidad del método propuesto y cómo los algoritmos basados en máquinas de vectores soporte o los de aumentado de gradiente extremo son los que mejores resultados obtienen.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno