Ir al contenido

Documat


Resumen de Congruencias de esferas geodésicas em H3 e S3

Edwin O. S. Reyes, Carlos Carrión Riveros

  • español

    Em [2], foi obtida uma caracterização das superfícies em R3 que são envelopes de uma congruência de esferas em R3, na qual o outro envelope está em R2. Neste artigo, caracterizamos as superfícies de H3 e S3 que são envelopes de uma congruência de esferas geodésicas em H3 e S3, respectivamente, na qual o outro envelope está contido em H2 H3 e S2 S3. Mostramos que esta caracterização permite obter localmente uma parametrização das superfícies contidas em H3 e S3, esta caracterização estende o resultado obtido em [2]. Além disso, damos condições suficientes para que estas superficies estejam associadas localmente por uma transformação de Ribaucour. Também, apresentamos famílias de superfícies parametrizadas por linhas de curvatura H3 e S3, que dependem unicamente de uma função de duas variavéis, a qual é solução de uma equação diferencial. Finalmente, caracterizamos as superfícies de tipo esférico em H3 e S3, como as superfícies onde sua função raio é solução da equação de Helmholtz.

  • English

    In [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which the other envelope is contained in H2 H3and S2 S3. We show that this characterization allows locally to obtain a parameterization of the surfaces contained in H3 and S3, this characterization extends the result obtained in [2]. Moreover, we provide sufficient conditions for these surfaces to be locally associated by a transformation of Ribaucour. Also, we present families of surfaces parameterized by lines of curvature in H3 and S3, which depend on a function of two variables which is solution of a differential equation. Finally, we characterize the surfaces of the spherical type in H3 and S3, as the surfaces where its radius function is the solution of the Helmholtz equation. 


Fundación Dialnet

Mi Documat