Brasil
Brasil
Em [2], foi obtida uma caracterização das superfícies em R3 que são envelopes de uma congruência de esferas em R3, na qual o outro envelope está em R2. Neste artigo, caracterizamos as superfícies de H3 e S3 que são envelopes de uma congruência de esferas geodésicas em H3 e S3, respectivamente, na qual o outro envelope está contido em H2 H3 e S2 S3. Mostramos que esta caracterização permite obter localmente uma parametrização das superfícies contidas em H3 e S3, esta caracterização estende o resultado obtido em [2]. Além disso, damos condições suficientes para que estas superficies estejam associadas localmente por uma transformação de Ribaucour. Também, apresentamos famílias de superfícies parametrizadas por linhas de curvatura H3 e S3, que dependem unicamente de uma função de duas variavéis, a qual é solução de uma equação diferencial. Finalmente, caracterizamos as superfícies de tipo esférico em H3 e S3, como as superfícies onde sua função raio é solução da equação de Helmholtz.
In [2], was obtained a characterization of the surfaces in R3 which are envelopes of a sphere congruence in R3, in which the other envelope is in R2. In this paper, we characterize the surfaces of H3 and S3 which are envelopes of a congruence of geodesic spheres in H3 and S3, respectively, in which the other envelope is contained in H2 H3and S2 S3. We show that this characterization allows locally to obtain a parameterization of the surfaces contained in H3 and S3, this characterization extends the result obtained in [2]. Moreover, we provide sufficient conditions for these surfaces to be locally associated by a transformation of Ribaucour. Also, we present families of surfaces parameterized by lines of curvature in H3 and S3, which depend on a function of two variables which is solution of a differential equation. Finally, we characterize the surfaces of the spherical type in H3 and S3, as the surfaces where its radius function is the solution of the Helmholtz equation.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados