Ir al contenido

Documat


Generalization of Rakotch's fixed Point Theorem

  • Morales, José R. [1]
    1. [1] Universidad de Los Andes

      Universidad de Los Andes

      Colombia

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 9, Nº. 1, 2002, págs. 25-33
  • Idioma: inglés
  • DOI: 10.15517/rmta.v9i1.207
  • Enlaces
  • Resumen
    • español

      En este trabajo usando la nocion de sobre un espacio métrico obtenemos alugunas generalizaciones del teorema de Rakotch [10].

    • English

      In this paper we get some generalizations of Rakotch's results [10] using the notion of $\omega ?distancia$ on a metric space

  • Referencias bibliográficas
    • Caristi, J. (1976) “Fixed Point theorems for satisfying inwardness conditions”, Trans. A.M.S. 215: 241–251.
    • Chu, S.C.; Diaz, J.B. (1965) “Remarks on a generalization of Banach’s Principle of contraction mappings”, J. Math. Anal. Appl. 11: 440–446.
    • Ciric, L.J. (1974) “A generalization of Banach’s contraction principle”, Proc. A.M.S. 45: 267–273.
    • Edelstein, M. (1961 y 1995) “An extension of Banach’s Contraction Principle”, Proc. A.M.S. 12(7). 10a edición: 1995.
    • Ekeland, I. (1979) “Non-convex minimization problems”, Bull. A.M.S. 1: 443–474.
    • Kada, O.; Suzuki, T.; Takahashi, W. (1996) “Non convex minimization theorems and fixed point theorems in complete metric spaces”, Math. Japon....
    • Kannan, R. (1969) “Some results on fixed points-II”, Amer. Math. Monthly 76: 405–408.
    • Morales, J.R. Generalizations of some fixed point theorems, (to appear).
    • Nadler Jr., S.B. (1969) “Multivalued contraction mappings”, Pacif. Journ. Math. 30: 475–488.
    • Rakotch, E. (1962) “A note on contractive mappings”, Proc. A.M.S. 13: 459–465.
    • Rus, I.A. (1983) “Seminar on fixed point theory”, Preprint 3, Babes-Bolyai University, Faculty of Mathematics.
    • Singh, S.P. (1972) “Fixed point theorems in metric spaces”, Riv. Mat. Univ. Parma 3(1): 37–40.
    • Singh, K.L.; Deb, S.; Gardner, B. (1972) “On contraction mappings”, Riv. Mat. Univ. Parma 3(2): 143–151.
    • Subrahmanyan, P.V. (1974) “Remarks on some fixed point theorems related to Banach’s Contraction Principle”, J. Math. Phys. Sci. 8: 445–457.
    • Suzuki, T.; Takahashi, W. (1996) “Fixed point theorems and characterizations of metric completeness”, Top. Meth. in Nonlinear Analysis 8:...
    • Suzuki, T. (1997) “Several fixed point theorems in complete metric spaces”, Yokohama Mathematical Journ. 44: 61–72.
    • Takahashi, W. (1991) “Existence theorems generalizing fixed point theorems for multivalued mappings”, in Fixed Point Theory and Applications,...
    • Telci, M.; Tas, K. (1992) “Some fixed point theorems on an arbitrary metric space”, Math. Balk. 6(3): 251–255.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno