Revista de Matemática: Teoría y Aplicaciones 2002 9(1): 25–33 cimpa – ucr – ccss issn: 1409-2433

GENERALIZATION OF RAKOTCH'S FIXED POINT THEOREM^{*}

José R. Morales^{\dagger}

Recibido/Received: 20 Junio/June 2000

Abstract

In this paper we get some generalizations of Rakotch's results [10] using the notion of ω -distance on a metric space.

Keywords: fixed point, completeness, ω -Rakotch contraction.

Resumen

En este trabajo usando la nocion de ω – *distancia* sobre un espacio mtrico obtenemos alugunas generalizaciones del teorema de Rakotch [10].

Palabras clave: punto fijo, completitud, contracción ω -Rakotch.

Mathematics Subject Classification: 47H10, 54E50

1 Introduction

In 1996, O. Kada, T. Suzuki & W. Takahashi [6] introduced the concept of ω -distance on a metric space, gave some examples, properties of ω -distance and they improved Caristi's fixed point [1], Ekeland's ε -variational principle [5] and the non-convex minimization theorem according to W. Takahashi [17]. Finally, by the use of the concept of ω -distance they proved a fixed point theorem in a complete metric space. This theorem generalized the fixed theorems of Subrahmanyan [14], Kannan [7] and Ciric [3]. In the same year T. Suzuki & W. Takahashi [15] gave another property of the ω -distance and using this notion they proved a fixed point theorem for set-valued mappings on complete metric spaces

^{*}This work was supported by C.D.C.H.T.-ULA C-903-98-05-B.

[†]Universidad de los Andes, Facultad de Ciencias, Departamento de Matemáticas, Grupo Análisis Funcional. Mérida, Edo. Mérida. Venezuela. E-Mail: moralesj@ciens.ula.ve

which are related with Nadler's fixed point theorem [9] and Edelstein theorem [4]. Moreover, they gave a characterization of completeness metric spaces. In 1997, T. Suzuki [16], proved several fixed point theorems which are generalizations of the Banach contraction principle and Kannan's fixed point theorems, and moreover, they discuss a characterization of metric completeness. In this paper we prove some fixed point theorems which are generalizations of Rakotch's theorem.

2 Preliminaries

Throughout this paper we denote by \mathbb{N} the set of positive integers, by \mathbb{R} the set of real numbers and $\mathbb{R}^+ = [0, +\infty]$.

Definition 2.1. Let (M, d) be a metric space. A function $p: M \times M \to [0, +\infty]$ is called a ω -distance on M if the following conditions are satisfied:

 w_1 .- $p(x, z) \le p(x, y) + p(y, z)$ for any $x, y, z \in M$.

- w_2 .- For any $x \in M$, $p(x, \cdot) : M \to [0, +\infty]$ is lower semi continuous.
- w₃.- For any $\varepsilon > 0$ exists $\delta = \delta(\varepsilon) > 0$ such that, $p(z, x) \le \delta$ and $p(z, y) \le \delta$ imply $d(x, y) \le \varepsilon$.

The metric d is a ω -distance on M. Some other examples of ω -distances are given in [6] and [15]. The following results are crucial in the proof of our theorems. The next lemma was proved in [6].

Lemma 2.2. Let (M, d) be a metric space and let p be a ω -distance on M. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0, +\infty)$ converging to 0, and let $x, y, z \in M$. Then the following hold:

- a.- If $p(x_n, y) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$ then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0 then y = z.
- b.- If $p(x_n, y_n) \leq \alpha_n$ and $p(x_n, z) \leq \beta_n$ for any $n \in \mathbb{N}$ then $\{y_n\}$ converges to z.
- c.- If $p(x_n, x_m) \leq \alpha_n$ for any $n, m \in \mathbb{N}$ with m > n then $\{x_n\}$ is a Cauchy sequence.
- *d.-* If $p(y, x_n) \leq \alpha_n$ for any $n \in \mathbb{N}$ then $\{x_n\}$ is a Cauchy sequence.

Definition 2.3. Let (M,d) be a metric space. A finite sequence $\{x_0, x_1, \ldots, x_n\}$ of points of M is called an ε -chain joining x_0 and x_n if $d(x_{i-1}, x_i) < \varepsilon$ for each $\varepsilon > 0$, $i = 1, 2, \ldots, n$.

Definition 2.4. A metric space (M, d) is said to be ε -chainable if for each pair (x, y) of its points there exists an ε -chain joining x and y.

Every connected metric space is ε -chainable but the converse in not always true. However, for compact spaces both are equivalent. The following result was proved in [15]. **Lemma 2.5.** Let $\varepsilon \in (0, +\infty)$ and let (M, d) be an ε -chainable metric space. Then the function $p: M \times M \to [0, +\infty)$ defined by

$$p(x,y) = \inf\{\sum_{i=1}^{n} d(x_{i-1},x_i) / \{x_0,x_1,\ldots,x_n\} \text{ is an } \varepsilon\text{-chain joining } x \text{ and } y\}$$

is a ω -distance on M.

We extend the class of functions introduced by Rakotch [10] in the following definition.

Definition 2.6. Let (M, d) be a metric space and let p be a ω -distance on M. We denote by \mathcal{F} the family of functions $\lambda(x, y)$ satisfying the following conditions:

- a.- $\lambda(x,y) = \lambda(p(x,y))$, i.e., λ is dependent on the ω -distance p on M.
- b.- $0 \leq \lambda(p) < 1$ for every p > 0.
- c.- $\lambda(p)$ is monotonically decreasing function of p.

Now we introduce the following definition.

Definition 2.7. Let (M, d) be a metric space and let p be a ω -distance on M. A mapping $T: M \to M$ is called a ω -Rakotch contraction if there exists a function $\lambda(x, y) \in \mathcal{F}$ such that

$$p(Tx, Ty) \le \lambda(x, y)p(x, y)$$

for all $x, y \in M$.

Remarks:

a.- If p = d then T is called a Rakotch contraction.

b.- If $\lambda(x, y) = k$, $0 \le k < 1$ then we get for all $x, y \in M$

$$p(Tx, Ty) \le kp(x, y).$$

T is called an ω -contraction [6] and [15], and if p = d then T is a Banach contraction.

c.- If $\lambda(x, y) = k \ 0 \le k < 1$ then for all $x \ne y$ implies

$$p(Tx, Ty) < p(x, y)$$

and we call T a ω -contractive mapping. It is clear that if p = d then $x \neq y$ implies d(Tx, Ty) < d(x, y) and T is called a contractive mapping.

3 Fixed point theorems

The next result generalizes Rakotch's theorem [10].

Theorem 3.1. Let (M, d) be a complete metric space and let p be an ω -distance on M. Let $T : M \to M$ be an ω -Rakotch contraction. Then there exists a unique $z \in M$ such that Tz = z. Further, the z satisfies p(z, z) = 0

PROOF: Since T is a ω -Rakotch contraction there exists a mapping $\lambda(x, y) \in \mathcal{F}$ such that

$$p(Tx, Ty) \le \lambda(x, y)p(x, y)$$

for all $x, y \in M$. Let $x_0 \in M$ and define $x_n = T^n x_0, n \in \mathbb{N}$

$$p(x_n, x_{n+1}) = p(Tx_{n-1}, Tx_n) \le \lambda(x_{n-1}, x_n) p(x_{n-1}, x_n) \le \dots \le$$
$$\le \prod_{k=0}^{n-1} \lambda(p(x_k, x_{k+1})) p(x_0, Tx_0)$$

and

$$p(x_{n+1}, x_n) = p(Tx_n, Tx_{n-1}) \le \lambda(x_n, x_{n-1})p(x_n, x_{n-1}) \le \dots \le$$
$$\le \prod_{k=0}^{n-1} \lambda(p(x_k, x_{k+1}))p(x_0, Tx_0).$$

It follows that

$$p(x_n, x_{n+1}) < p(x_0, Tx_0)$$

and

$$p(x_{n+1}, x_n) < p(Tx_0, x_0)$$

for all $n = 1, 2, \dots$ Now we prove that

 $p(x_0, x_n) \le C$

for some C > 0 and n = 1, 2, 3, ...In fact,

$$p(x_1, x_{n+1}) \leq \lambda(p(x_0, x_n))p(x_0, x_n)$$

and by the triangle inequality

$$p(x_0, x_n)\lambda p(x_0, x_1) + p(x_1, x_{n+1}) + p(x_{n+1}, x_n)$$

and

$$p(x_0, x_n) \le p(x_0, Tx_0) + \lambda(p(x_0, x_n))p(x_0, x_n) + p(x_{n+1}, x_n)$$

hence

$$p(x_0, x_n) < \frac{p(x_0, Tx_0) + p(Tx_0, x_0)}{1 - \lambda(p(x_0, Tx_n))}.$$

$$\lambda(p(x_0, Tx_n)) \le \lambda(\alpha_0)$$

and therefore

$$p(x_0, x_n) < \frac{p(x_0, Tx_0) + p(Tx_0, x_0)}{1 - \lambda(\alpha_0)} = C$$

On the other hand if $p(x_k, x_{k+1}) \ge \varepsilon_0, k = 0, 1, \dots, n-1$ for any $\varepsilon_0 > 0$ then by monotonicity of λ it follows that

$$\lambda(p(x_k, x_{k+1})) \le \lambda(\varepsilon_0)$$

and hence

$$p(x_n, x_{n+1}) \le [\lambda(\varepsilon_0)]^n p(x_0, Tx_0).$$

But $0 \leq \lambda(\varepsilon_0) < 1$ by lemma 2.1 we have $\lim_{n \to \infty} p(x_n, x_{n+1}) = 0$. We shall show that $\{x_n\}$ is a Cauchy sequence in (M, d). For m > 0, $p(x_n, x_{n+m}) \leq \prod_{k=0}^{n-1} \lambda[p(x_k, x_{k+m})]p(x_0, Tx_0)$. If $p(x_k, x_{k+m}) \geq \varepsilon_0$ for any given $\varepsilon_0 > 0$ and $k = 0, 1, \ldots, n-1$ then

$$p(x_n, x_{n+m}) \le [\lambda(\varepsilon_0]^n) p(x_0, Tx_0) \to 0$$

as $n \to \infty$ and by lemma 2.1 we have that $\{x_n\}$ is a Cauchy sequence. Since (M, d) is complete, $\{x_n\}$ converges to some $z \in M$. Since $x_m \to z$ and $p(x_n, .)$ is lower semicontinuous,

$$p(x_n, z) \le \lim_{m \to \infty} p(x_n, x_m) \le \lambda^n(\varepsilon_0) p(x_0, Tx_0)$$

so $\lim_{n \to \infty} p(x_n, z) = 0.$ On the other hand,

$$p(x_n, Tz) = p(Tx_{n-1}, Tz) \le \lambda(p(x_{n-1,z}))p(x_{n-1}, z) < p(x_{n-1}, z)$$

so $\lim_{n\to\infty} p(x_n, Tz) = 0$ and by lemma 2.2 we have Tz = z. Now,

$$p(z,z) = p(Tz,Tz) \le \lambda(z,z)p(z,z) < p(z,z)$$

so p(z, z) = 0. If y = Ty then

$$p(z,y) = p(Tz,Ty) \le \lambda(z,y)p(z,y) < p(z,y)$$

and p(z, y) = 0 so by lemma 2.1 we have z = y.

Remarks:

- a.- In case p = d, (M, d) is a complete metric space and $T : M \to M$ is a Rakotch contraction then we get the Rakotch's theorem [10].
- b.- If (M, d) a complete metric space and $\lambda(x, y) = k$, $0 \le k < 1$ we get a generalization of the Banach Contraction Principle [8] and [15].

Theorem 3.2. Let (M, d) be a complete metric space, let p be a ω -distance on M and $T : M \to M$ is a mapping such that for some integer $m \in \mathbb{N}$ T^m is an ω -Rakotch contraction. Then T has a unique fixed point, i.e., there exists $z \in M$ such that Tz = z and moreover holds p(z, z) = 0.

PROOF: Since for some $m \in \mathbb{N}$ T^m is a ω -Rakotch contraction, then there exists a function $\lambda(x, y) \in \mathcal{F}$ such that

$$p(T^m x, T^m y) \le \lambda(x, y) p(x, y)$$

for every $x, y \in M$.

Hence by theorem 3.1 there exists a unique $z \in M$ such that $z = T^m z$ for $m \in \mathbb{N}$ and $Tz = T(T^m z) = T^m(Tz)$ it follows that z = Tz.

Let us remark that in case $\lambda(x, y) = k$, $0 \le k < 1$, p = d and (M, d) complete metric space we get the Chu-Diaz's Theorem [2].

Now we get another generalization of Rakotch's Theorem [10] using Maia's Theorem [11]. ■

Theorem 3.3. Let M be a non empty set, d, and ρ two metrics on M, p and q their respective ω -distances on M and $T: M \to M$ a mapping. Suppose that:

- a.- $p(x,y) \leq q(x,y)$ for all $x, y \in M$.
- b.- (M, d) is a complete metric space.
- c.- $T: (M, \rho) \to (M, \rho)$ is a ω -Rakotch contraction, i.e., there exists $\lambda(x, y) \in \mathcal{F}$ such that

$$q(Tx, Ty) \le \lambda(x, y)q(x, y)$$

for every $x, y \in M$. Then there exists $z \in M$ such that Tz = z and moreover p(z, z) = 0.

PROOF: Let $x_0 \in M$ and define $x_n = T^n x_0, n \in \mathbb{N}$. from (c), $\{x_n\}$ is a Cauchy sequence in (M, ρ) . By (a) and lemma 2.2, $\{x_n\}$ is a Cauchy sequence in (M, d) and by (b) it converges. The rest of the proof is similar to Theorem 3.1.

Now we generalize a result given by Singh-Deb-Gardner in [13].

Theorem 3.4. Let $\varepsilon \in (0, +\infty)$ be and let (M, d) be a complete ε -chainable metric space. If T is a mapping from M into itself satisfying, $0 < d(x,y) < \varepsilon$ implies $d(Tx,Ty) \leq \lambda(x,y)d(x,y)$ for all $x, y \in M$ and $\lambda(x,y) \in \mathcal{F}$. Then T has a unique $z \in M$ such that z = Tz.

PROOF: Since (M,d) is ε -chainable for every $x, y \in M$ we define the function $p: M \times M \to [0, +\infty)$ as follows:

$$p(x,y) = \inf\{\sum_{i=1}^{n} d(x_{i-1}, x_i) / \{x_0, \dots, x_n\} \text{ is an } \varepsilon \text{-chain joining } x \text{ and } y\}.$$

From lemma 2.2, p is a ω -distance on M satisfying $d(x, y) \leq p(x, y)$. Given $x, y \in M$ and any ε -chain $\{x_0, \ldots, x_n\}$ with $x_0 = x$ and $x_n = y$ we have for $i = 1, \ldots, n$,

$$d(Tx_{i-1}, Tx_i) \le \lambda[d(x_{i-1}, x_i)]d(x_{i-1}, x_i) < \lambda(\varepsilon)\varepsilon < \varepsilon$$

. Hence Tx_0, \ldots, Tx_n is an ε -chain joining Tx and Ty, and

$$p(Tx, Ty) \le \sum_{i=1}^{n} d(Tx_{i-1}, Tx_i) \le \sum_{i=1}^{n} \lambda(d(x_{i-1}, x_i) d(x_{i-1}, x_i))$$

. Since $\{x_0, \ldots, x_n\}$ is an arbitrary ε -chain we have

$$p(Tx, Ty) \le \lambda(x, y)p(x, y),$$

hence by theorem 3.1, T has a unique fixed point $z \in M$, z = Tz.

Remark: If $\lambda(x, y) = k$, $0 \le k < 1$ and p = d we get the result due to Edelstein [4].

Finally, the following result generalizes Singh's theorem [12].

Theorem 3.5. Let $\varepsilon \in (0, +\infty)$ be and let (M, d) a complete ε -chainable metric space. If T is a mapping from M into itself satisfying the condition,

$$d(x,y) < \varepsilon$$
 implies $d(T^m x, T^m y) \le \lambda(x,y) d(x,y)$

for every $x, y \in M$, for $m \in M$ and $\lambda(x, y) \in \mathcal{F}$, then T has a unique fixed point in M.

PROOF: As in theorem 3.4 we define p as follows:

$$p(x,y) = \inf\{\sum_{i=1}^{n} d(x_{i-1}, x_i) / \{x_0, \dots, x_n\} \text{ is a } \varepsilon \text{-chain joining } x \text{ and } y\}.$$

By lemma 2.2, p is a ω -distance on M satisfying $d(x, y) \leq p(x, y)$. As in theorem 3.3 we have that T^m satisfies the condition

$$p(T^m x, T^m y) \le \lambda(x, y) p(x, y)$$

for all $x, y \in M$, $m \in \mathbb{N}$ and therefore by theorem 3.4 we conclude that T^m has a unique $z \in M$ such that $z = T^m z$. It follows that T has a unique fixed point z and moreover p(z, z) = 0.

Finally, using the ideas of M.Telci-K.Tas [18] we obtain a generalization of Rakotch's theorem on noncomplete metric spaces.

Theorem 3.6. Let (M, d) be a noncomplete metric space and let p be a ω -distance on M. Let $T: M \to M$ be a ω -Rakotch contraction and suppose that there exists a point $u \in M$ such that

$$\theta(u) = \inf\{\theta(x) | x \in M\}$$

where $\theta(x) = p(x, Tx)$ for all $x \in M$. Then u is a fixed point of T.

PROOF: Suppose that $u \neq T(u)$, since otherwise u would be a fixed point of T. Now since T is a ω -Rakotch contraction there exists $\lambda(x, y) \in \mathcal{F}$ such that

$$p(Tx, Ty) \le \lambda(p(x, y))p(x, y)$$

for all $x, y \in M$ and so

$$\theta(Tu) = p(Tu, T^2u) \le \lambda(p(u, Tu))p(u, Tu) < p(u, Tu) = \theta(u)$$

which is a contradiction.

The author wishes to thank the referees for their comments.

References

- Caristi, J. (1976) "Fixed Point theorems for satisfying inwardness conditions", Trans. A.M.S. 215: 241–251.
- [2] Chu, S.C.; Diaz, J.B. (1965) "Remarks on a generalization of Banach's Principle of contraction mappings", J. Math. Anal. Appl. 11: 440–446.
- [3] Ciric, L.J. (1974) "A generalization of Banach's contraction principle", Proc. A.M.S. 45: 267–273.
- [4] Edelstein, M. (1961 y 1995) "An extension of Banach's Contraction Principle", Proc. A.M.S. 12(7). 10^a edición: 1995.
- [5] Ekeland, I. (1979) "Non-convex minimization problems", Bull. A.M.S. 1: 443–474.
- [6] Kada, O.; Suzuki, T.; Takahashi, W. (1996) "Non convex minimization theorems and fixed point theorems in complete metric spaces", *Math. Japon.* 44: 381–391.
- [7] Kannan, R. (1969) "Some results on fixed points-II", Amer. Math. Monthly 76: 405–408.
- [8] Morales, J.R. Generalizations of some fixed point theorems, (to appear).
- [9] Nadler Jr., S.B. (1969) "Multivalued contraction mappings", Pacif. Journ. Math. 30: 475–488.
- [10] Rakotch, E. (1962) "A note on contractive mappings", Proc. A.M.S. 13: 459–465.
- [11] Rus, I.A. (1983) "Seminar on fixed point theory", Preprint 3, Babes-Bolyai University, Faculty of Mathematics.
- [12] Singh, S.P. (1972) "Fixed point theorems in metric spaces", Riv. Mat. Univ. Parma 3(1): 37–40.
- [13] Singh, K.L.; Deb, S.; Gardner, B. (1972) "On contraction mappings", *Riv. Mat. Univ. Parma* 3(2): 143–151.

- [14] Subrahmanyan, P.V. (1974) "Remarks on some fixed point theorems related to Banach's Contraction Principle", J. Math. Phys. Sci. 8: 445–457.
- [15] Suzuki, T.; Takahashi, W. (1996) "Fixed point theorems and characterizations of metric completeness", Top. Meth. in Nonlinear Analysis 8: 371–382.
- [16] Suzuki, T. (1997) "Several fixed point theorems in complete metric spaces", Yokohama Mathematical Journ. 44: 61–72.
- [17] Takahashi, W. (1991) "Existence theorems generalizing fixed point theorems for multivalued mappings", in *Fixed Point Theory and Applications*, Pitman Research Notes in mathematics, Series 252: 397–406.
- [18] Telci, M.; Tas, K. (1992) "Some fixed point theorems on an arbitrary metric space", Math. Balk. 6(3): 251–255.