Ir al contenido

Documat


Pensamiento matemático creativo en aulas de enseñanza primaria: entornos didácticos que posibilitan su desarrollo

  • Paulina Araya [1] ; Valentina Giaconi [2] ; María Victoria Martínez [2]
    1. [1] Universidad Alberto Hurtado

      Universidad Alberto Hurtado

      Santiago, Chile

    2. [2] Universidad de O’Higgins
  • Localización: Calidad en la educación, ISSN-e 0718-4565, Nº. 50, 2019, págs. 319-356
  • Idioma: español
  • DOI: 10.31619/caledu.n50.717
  • Títulos paralelos:
    • Creative mathematical thinking in primary education classrooms: didactic environments that favor its development
  • Enlaces
  • Resumen
    • español

      La creatividad matemática se relaciona con la capacidad de crear ideas, soluciones o preguntas que resultan novedosas desde la perspectiva de quien las genera. El desarrollo de esta habilidad es relevante en matemática a nivel profesional y escolar. Este artículo muestra los resultados de una investigación cuyo propósito fue determinar la influencia de los entornos didácticos en la creatividad matemática de los estudiantes. Para ello se evaluó la creatividad matemática de 576 estudiantes de 5° básico pertenecientes a 21 cursos y 17 escuelas de Santiago de Chile y se emplearon modelos multinivel para indagar el efecto de distintos entornos didácticos. Los resultados muestran que el efecto del aula explica un 16% de la varianza total en la creatividad matemática de los estudiantes participantes. Una vez incorporados las variables de control “Nivel socioeconómico”, “Género” y los resultados de “Simce”, se observó que aquellos estudiantes que estuvieron en un entorno didáctico con una enseñanza caracterizada por involucrarlos de forma activa en la construcción de ideas y cuyos profesores mostraron una mayor capacidad para variar la dificultad de los problemas matemáticos, obtuvieron puntajes de creatividad matemática significativamente más altos. Estos hallazgos relevan la importancia del trabajo en el aula para el desarrollo del pensamiento matemático creativo.

    • English

      Mathematical creativity is related to the ability to create ideas, solutions or questions that are novel, from the perspective of who generates them. The development of this skill is relevant in mathematics at both the professional and grade school level. This article shows the results of a study which sought to determine the influence of didactic environments on students’ mathematical creativity. To this end, we evaluated the mathematical creativity of 576 5th grade students, from 21 cohorts and 17 schools in Santiago de Chile, and used multilevel models to investigate the effect of different teaching environments. The results show that the classroom effect helps to explain 16% of the total variance in the mathematical creativity of the participating students. Once the control variables “Socioeconomic Level”, “Gender” and “Simce” (standardized test results) were incorporated, it was observed that those students who were in a didactic environment with teaching characterized by actively involving them in the construction of ideas and whose teachers showed a greater capacity to vary the difficulty of the mathematical problems, obtained significantly higher scores of mathematical creativity. These findings reveal the importance of classroom experiences for the development of creative mathematical thinking.

  • Referencias bibliográficas
    • Baer, J.,Kaufman, J.. (2008). Gender differences in creativity. The Journal of Creative Behavior. 42. 75-105
    • Barquero, B.,Richter, A.,Barajas, M.,Font, V.. (2014). Investigación en educación matemática. Sociedad Española de Investigación en Educación...
    • Bickel, R.. (2007). Multilevel analysis for applied research: It’s just regression!. Guilford Press. New York.
    • Brousseau, G.. (2007). Iniciación al estudio de la teoría de las situaciones didácticas. Libros del Zorzal. Buenos Aires.
    • Brousseau, G.,Sarrazy, B.,Novotná, J.. (2014). Encyclopedia of mathematics education. Springer Netherlands. Dordrecht.
    • Csikszentmihalyi, M.. (2000). Handbook of creativity. Cambridge University Press. Cambridge.
    • Dreyfus, T.,Eisenberg, T.. (1996). The nature of mathematical thinking. Lawrence Erlbaum. Mahwah.
    • (2006). European Commission. Recommendation 2006/962/EC of the European Parliament and of the Council of 18 December 2006 on key competences...
    • Ervynck, G.. (1991). Advanced mathematical thinking. Springer. Dordrecht.
    • Evans, E. W.. (1964). Measuring the ability of students to respond in creative mathematical situations at the late elementary and early junior...
    • Fielding, A.. (2006). Cluster and classifcation techniques for the biosciences. Cambridge University Press. New York.
    • Ginsburg, H.. (1996). The nature of mathematical thinking. Lawrence Erlbaum. Mahwah.
    • Hannula, M.. (2014). Encyclopedia of mathematics education. Springer Netherlands. Dordrecht.
    • Hannula, M.,Di Martino, P.,Pantziara, M.,Zhang, Q.,Morselli, F.,Heyd-Metzuyanim, E. …,Goldin, G.. (2016). Attitudes, beliefs, motivation and...
    • Hershkowitz, R.,Tabach, M.,Dreyfus, T.. (2017). Creative reasoning and shifts of knowledge in the mathematics classroom. ZDM Mathematics Education....
    • Jensen, L.. (1973). The relationships among mathematical creativity, numerical aptitude and mathematical achievement. Dissertation Abstracts...
    • Joët, G.,Usher, E.,Bressoux, P.. (2011). Sources of self-efficacy: An investigation of elementary school students in France. Journal of Educational...
    • Kanhai, A.,Singh, B.. (2016). Some environmental and attitudinal characteristics as predictors of mathematical creativity. International Journal...
    • Kattou, M.,Kontoyianni, K.,Pitta-Pantazi, D.,Christou, C.. (2013). Connecting mathematical creativity to mathematical ability. ZDM Mathematics...
    • Kwon, O. N.,Park, J. H.,Park, J. S.. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education...
    • Lee, K.,Hwang, D.,Seo, J.. (2003). A development of the test for mathematical creative problem solving ability. Journal of the Korea Society...
    • Leikin, R.. (2013). Evaluating mathematical creativity: The interplay between multiplicity and insight. Psychological Test and Assessment...
    • Leikin, R.,Pitta-Pantazi, D.. (2013). Creativity and mathematics education: The state of the art. ZDM Mathematics Education. 45. 159
    • Lev-Zamir, H.,Leikin, R.. (2013). Saying versus doing: teachers’ conceptions of creativity in elementary mathematics teaching. ZDM Mathematics...
    • Liljedahl, P.. (2013). Illumination: An affective experience?. The International Journal on Mathematics Education. 45. 253
    • Liljedahl, P.. (2016). Posing and solving mathematical problems. Springer International Publishing. New York.
    • Liljedahl, P.,Sriraman, B.. (2006). Musing on mathematical creativity. For the Learning of Mathematics. 26. 20
    • Linnenbrink, E. A.,Pintrich, P. R.. (2004). Motivation, emotion, and cognition; integrative perspectives on intellectual functioning and development....
    • Lithner, J.. (2008). A research framework for creative and imitative reasoning. Educational Studies in Mathematics. 67. 255
    • Mann, E. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted. 30. 236
    • Mann, E.. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal....
    • Mann, E.,Chamberlin, S.,Graefe, A.. (2017). The prominence of affect in creativity: Expanding the conception of creativity in mathematical...
    • (2012). Ministerio de Educación de Chile. Bases curriculares 2012: educación básica matemática.
    • Mizala, A.. (2014). Mujeres, matemáticas, carrera y brecha familiar.
    • Murillo, F.. (2008). Los modelos multinivel como herramienta para la investigación educativa. Magis, Revista Internacional de Investigación...
    • Nohda, N.. (2000). Teaching by open-approach method in Japanese mathematics classroom. 24thConference of the International Group for the...
    • Novotná, J.,Sarrazy, B.. (2010). Teacher’s didactical variability and its role in mathematics education. CERME 6-Working group 9.
    • Novotná, J.,Sarrazy, B.. (2011). Constructing knowledge for teaching secondary mathematics. Springer US. Boston.
    • Pehkonen, E.. (1997). The state of art in mathematical creativity. ZDM Mathematics Education. 29. 63
    • Piirto, J.. (1999). Investigating creativity in youth: research methods. Hampton Press. Cresskill, NY.
    • Pinheiro, J.,Bates, D.,DebRoy, S.,Sarkar, D.,Team, R.. (2017). _nlme: Linear and nonlinear mixed effects models. R package version 3.1-131.
    • Prouse, H.. (1967). Creativity in school mathematics. Mathematics Teacher. 60. 876
    • (2016). R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
    • Sarrazy, B.. (2002). Effects of variability of teaching on responsiveness to the didactic contract in arithmetic problem-solving among pupils...
    • Sarrazy, B.,Novotná, J.. (2005). Proceedings SEMT 05. Charles University, Faculty of Education. Prague.
    • Sarrazy, B.,Novotná, J.. (2013). Didactical contract and responsiveness to didactical contract: A theoretical framework for enquiry into students’...
    • Sheffield, L.. (2013). Creativity and school mathematics: Some modest observations. ZDM Mathematics Education. 45. 325
    • Sheffeld, L.. (2017). Dangerous myths about “gifted” mathematics students. ZDM Mathematics Education. 49. 13-23
    • Sinclair, N.,Freitas, E.,Ferrara, F.. (2013). Virtual encounters: The murky and furtive world of mathematical inventiveness. ZDM Mathematics...
    • Singer, F.,Sheffeld, L.,Leikin, R.. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to...
    • Singh, B.. (1987). The development of tests to measure mathematical creativity. International Journal of Mathematical Education in Science...
    • Singh, B.. (1990). Differences in mathematical creativity of middle school children of different social groups. International Journal of Mathematical...
    • Smith, M.,Stein, M.. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics teaching in the middle school....
    • Sriraman, B.. (2009). The characteristics of mathematical creativity. ZDM Mathematics Education. 41. 13-27
    • Sternberg, R.. (2004). Creativity across domains: Faces of the muse. Lawrence Erlbaum. Hillsdale, New Jersey.
    • Tabach, M.,Friedlander, A.. (2013). School mathematics and creativity at the elementary and middle-grade levels: how are they related?. ZDM...
    • Torrance, E. P.. (1974). Torrance tests of creative thinking. Scholastic Testing Service. Bensenville.
    • Vergnaud, G.. (1983). Addition and subtraction: A cognitive perspective. Lawrence Erlbaum Associates. New Jersey.
    • Voica, C.,Singer, F.. (2013). Problem modifcation as a tool for detecting cognitive fexibility in school children. ZDM Mathematics Education....
Los metadatos del artículo han sido obtenidos de SciELO Chile

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno